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ABSTRACT
There is a consensus within existing literature in the terrorism field that cooperation
between terrorist groups increases their survival. Such a consensus is lacking where
lethality is concerned, in no small part due to lethality rarely being studied as a
primary explanatory variable for survival. Furthermore, existing literature does not
use statistical network methods to examine survival as a dependent variable. This
article uses network analysis to examine the effect that both lethality and alliances
have on terrorist group survival. I find that the consensus regarding cooperation
holds; even when taking network dependencies into account, cooperation leads to
longer survival. I also find support for lethality having a curvilinear effect on survival.

1. Introduction

How does a terrorist group survive? Extant literature has studied a number of factors
that may extend group survival, such as their funding sources, their orientation, and
their alliances (e.g. Acosta 2014; Choi, Choi, and Yang 2024; Gaibulloev and Sandler
2013; Hou, Gaibulloev, and Sandler 2020; Milton and Price 2020; Olzak 2016; Phillips
2015; Piazza 2018, 2021; Price 2019; Young and Dugan 2014). In this paper, I build
from this literature in two ways. First, I theorize about how lethality contributes
to or undermines terrorist group survival. Currently, research in the terrorism field
has included different measures of lethality as confounding variables but results are
ambiguous, with some studies finding that lethality increases survival, others finding
that it decreases survival, and others finding insignificant results (Blomberg, Engel,
and Sawyer 2010; Blomberg, Gaibulloev, and Sandler 2011; Gaibulloev and Sandler
2013; Hao 2022; Olzak 2022). I contribute not only by researching lethality as the
primary explanatory variable but also by incorporating the network of terrorist group
alliances. I follow the idea of lethality as a signal of capacity and I present a theory as
to why I expect that the effect of lethality on longevity is curvilinear, with the longest
survival expected for groups that have low levels of lethality and groups that have high
levels of lethality. This, I expect, is because the signal that groups send at low levels
of lethality is weak and does not promote urgency in a state response, while at high
levels of lethality, groups have the capacity to evade state attempts at elimination.

Second, I re-examine theories about alliances and survival. Extant literature is not in
disagreement; most research on the effect of alliances on terrorist group survival agree
that alliances extend longevity. However, the literature currently does not use network
analysis methods, instead continuing the use of traditional regression models that treat



groups as independent, when merely having an alliance inherently means that groups
are not independent. This paper is one of the first to examine terrorist group survival
as a dependent variable while using statistical network methods. The contribution here
is not only the use of network methods; incorporating the alliance network also allows
the exploration of lethality while accounting for network dependence.

In my analysis, I employ techniques that enable me to examine how both lethality
and alliances affect survival; these techniques allow me to test the nonlinear effect of
lethality on survival and at the same time test the impact of alliances on survival.
The statistical network method that I use is a stochastic actor-oriented model, which
models the co-evolution of a network and a behavior. I use data on network alliances
in order to model the co-evolution of the global terrorist alliance network and terrorist
group survival. I do this with an extension of the Siena model first presented as a
diffusion model (Greenan 2015). Typically, this technique is used to model diffusion of
an actor-level variable through a network, such as how adolescent drinking or smoking
diffuses through a friendship network (Greenan 2015; Light et al. 2013, 2019). However,
because the diffusion model reduces to a proportional hazards model, I use it instead
to model survival. I pair this with an accelerated failure time model to account for any
shortcomings with the Siena diffusion model. I find support for both of my hypotheses.

The rest of the paper is as follows. I review literature on lethality, capacity, and sur-
vival and theorize about how lethality affects survival. I then review the literature on
cooperation and survival and present a hypothesis about how alliances affect survival.
This is followed by the research design, wherein I explain the process of collecting the
network data, an explanation of the stochastic actor-oriented model and how it will
be implemented, and an explanation of how the accelerated failure time model will be
implemented. This is followed with a discussion of the results for each type of model.
I end with a discussion of the next steps.

2. Lethality and Survival

How does a terrorist group’s capacity for violence affect its survival? The effect of
overall lethality of terrorist organizations on their survival has rarely been studied as
a primary explanatory variable, but organizational lethality has often been included
as a control variable in studies of terrorist group longevity. As a control variable,
lethality or the amount of violence that a group does has been conceptualized in
different ways. In some studies, lethality is measured as the number of casualties
or fatalities (Blomberg, Engel, and Sawyer 2010; Blomberg, Gaibulloev, and Sandler
2011; Hao 2022; Olzak 2022) or the number of casualties per million people in the base
country (Gaibulloev, Hou, and Sandler 2020). In other studies, lethality is measured
as a number of attacks (Carter 2012; Hao 2022), and it has even been measured as
casualties per attack (Gaibulloev and Sandler 2013).

Findings when these various conceptualizations of lethality have been included as
control variables have been mixed. In some studies, an increase in lethality is associ-
ated with an increase in survival (Blomberg, Engel, and Sawyer 2010). In other studies,
an increase in lethality is associated with a decrease in survival (Blomberg, Gaibul-
loev, and Sandler 2011; Gaibulloev and Sandler 2013). And still other research finds
insignificant results for the respective measure(s) of violence, suggesting no evidence
that lethality affects terrorist group survival (Acosta 2014, 2016; Hao 2022). Young
and Dugan (2014) take a more direct approach at examining lethality. They create a
variable for “top dog” groups, measured as the terrorist organizations that committed
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the most attacks in their primary country, and they find that top dog groups are less
likely to end.

A few pieces of extant literature examine distinct ways that terrorist groups end,
treating these as competing risks. Carter (2012) examines internal splintering and end-
ing by force. The primary variable of interest is safe havens, but a count of attacks is
included as a control variable, and he finds that a count of attacks increases the likeli-
hood of ending by force. Gaibulloev and Sandler (2014) use competing risk analysis to
explore different ways that terrorist groups end, including by military or police force,
splintering, and victory or joining the political process. Their analysis includes only
transnational attacks and as such, they measure lethality as the number of transna-
tional attacks per million people. They find no evidence that the number of attacks
affects the different ways of ending, but they do find that a higher number of attacks
makes groups that began after 1990 more likely to end overall. They suggest that this
is because increased attacks engenders a stronger state response. Olzak (2022) studies
two ways of ending: ending by joining politics and ending by military force, splintering,
merging, or fading away. The main explanatory variable of interest is ideological am-
biguity, and the number of civilian deaths is included as a control variable.1 She finds
that causing a higher number of civilian deaths decreases the risk of ending by military
force, splintering, merging, or fading away, but the effect is substantively small.

In this paper, I attempt to reconcile these ambiguous findings. I do so by adopt-
ing the idea that lethality aligns with capacity. Capacity denotes a group’s access to
material resources and information (Asal and Rethemeyer 2008), and access to re-
sources should in turn enable a group to increase lethality. Bueno de Mesquita (2005)
links resources to capacity by arguing that terrorist organizations devote their limited
resources to the most skilled members, and with more skilled members, the groups
devote more resources to violence.

Much of the extant literature demonstrates that increased capacity engenders in-
creased lethality. The clandestine nature of terrorist organizations makes it inherently
difficult to assess their capacity, but many studies focus on proxies for organizational
capacity or strength. These proxies, such as size, tactical diversity, or territorial con-
trol, are often found to increase lethality, whether conceptualized as fatalities (Asal
and Rethemeyer 2008; Fisher and Asal 2021; Hou, Gaibulloev, and Sandler 2020; Olzak
2022) or attacks (Clauset and Gleditsch 2012; Mierau 2015). Asal et al. (2018) look
specifically at insurgent groups and argue that insurgent groups need a certain level
of capacity to be able to withstand state repression by turning to the targeting of
civilians. It has even been argued that organizational capacity is the best determinant
of lethality (Fisher and Asal 2021), and Robinson and Malone (2024) argue that the
violence of splinter groups depends on their capacity.

In addition to the research which finds that organizational capacity leads to an
increase in organizational lethality, other research argues that lethality is a conceptu-
alization of capacity in and of itself. Overgaard (1994) and Lapan and Sandler (1993),
for example, show that attacks signal to the government the amount of resources that
a group has, and Overgaard (1994) in particular argues that the first attack that a
group commits should be destructive enough to indicate that they have high resource
levels even if they do not actually have high resource levels. In other words, groups’
initial attacks should be lethal enough to signal high capacity. Horowitz and Potter
(2014) contend that lethality itself represents capacity, and in a similar vein, Blair and
Potter (2022) argue that violent attacks are a demonstration of capacity.

1In Olzak (2022), the number of civilian deaths also serves as a dependent variable in part of the analysis.
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If lethality functions as capacity, then it seems logical that groups with higher lethal-
ity should last longer. However, I expect that the relationship is not so straightforward
and it is precisely because lethality is a signal of capacity that groups with very low
lethality will also last longer. This is because lethality sends a signal of the destruction
that a group is willing to do (Lapan and Sandler 1993; Overgaard 1994), and I theorize
that at low levels of lethality, the signal is not strong enough to warrant urgency from
the state, nor enough to leverage the state into making concessions.

I also expect that groups with high levels of lethality will last longer. This is because
at high levels of lethality, groups have undermined their own bargaining power, so
they are less likely to be granted concessions (Abrahms 2006, 2012). In civil wars, for
example, groups that kill more civilians are less likely to receive concessions or achieve
their goals (Fortna 2015; Stanton 2020; Wood and Kathman 2015). In fact, research
has shown that high levels of lethality or high-lethality tactics bring about a backlash
in which the government becomes more resolved to eliminate the group (Abrahms
2013; Acosta 2014). Yet, at the same time, if lethality correlates with capacity or
functions as capacity, even as the state pursues the group with increased intensity, the
groups that have high levels of lethality will have the capacity to avoid detection and
elimination. Thus, I expect that there is a middle level of lethality at which terrorist
groups are more likely to terminate. This argument can be restated as the following
hypothesis:

H1 : Terrorist groups that exhibit moderate levels of lethality are more likely to end.

3. Cooperation and Survival

One of the ways that terrorist groups increase their capacity is through alliances.
Terrorist groups cooperate with other groups in order to overcome organizational
deficiencies (Bacon 2018a). Doing so allows for resources pooling so that groups gain
skills, recruits, weapons, funding, and even tactical information (Asal and Rethemeyer
2008; Asal and Shkolnik 2024; Byman 2014; Horowitz and Potter 2014; Moghadam
2017; Phillips 2019; Plapinger and Potter 2017; Price 2012). For instance, by forming
network ties, Al-Qaeda was able to specialize within the Iraq market, brand outside
it, legitimize itself within the network, and gain access to donors, logistics, and pro-
paganda capacities (Byman 2014). Bacon (2018b) argues that certain groups become
alliance hubs in that many groups try to ally with them to improve their own capacity.

The increase in capacity is shown in that terrorist groups and insurgencies with
allies have increased lethality. Some studies have found this when considering the
number of allies that a group has (Asal and Rethemeyer 2008; Asal and Shkolnik
2024; Olzak 2022). Others find that it is not the number of allies that a group has
but rather the connectedness of the allies or even the overall network of groups that
matters (Asal, Phillips, and Rethemeyer 2022; Horowitz and Potter 2014; Olzak 2016;
Pearson, Akbulut, and Lounsbery 2017). Organizations with allies have also been able
to turn to more lethal tactics or more difficult targets (Asal, Phillips, and Rethemeyer
2022; Asal, Ackerman, and Rethemeyer 2012; Horowitz 2010).

As groups increase their capacity, they gain access to material and informational re-
sources which contribute to their survival. Lethality notwithstanding, terrorist groups
that have alliances tend to last longer (Acosta 2016, 2014; Choi, Choi, and Yang 2024;
Hou, Gaibulloev, and Sandler 2020; Milton and Price 2020; Phillips 2015; Price 2012,
2019). Phillips (2014) proposes that the connectedness of allies is what matters for
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survival, but he does not find support for this hypothesis and instead finds that the
number of alliances matter. However, Milton and Price (2020) find that the connect-
edness of allies matters. Still other research finds that allies or the connectedness of
allies matters not for terrorist groups ending in general but for specific kinds of endings
(Olzak 2016, 2022).

What the studies on alliances and organizational longevity have in common is that
they use traditional regression methods that treat groups as independent. However,
having alliances inherently means that groups are not independent, but rather exist in
a network. Even though terrorist groups exist in a network, the use of social network
analysis (SNA) in terrorism literature is still rare. Even research that collects original
data on terrorist or insurgent relationships still uses traditional regression methods
that assume independence (Acosta 2016; Balcells, Chen, and Pischedda 2022; Blair
et al. 2021). Those that do use statistical network methods do so primarily to model
the formation of alliances or rivalries rather than how these relationships affect the
groups themselves (Asal et al. 2016; Asal, Phillips, and Rethemeyer 2022; Balcells,
Chen, and Pischedda 2022; Blair et al. 2021; Gade et al. 2019).

I re-examine the idea that cooperation leads to longevity, but I use network methods
to do so. This enables me to take the entire network into account when exploring how
cooperation affects terrorist group survival, and it additionally allows me to account
for dependence while examining the hypothesis on lethality (H1). Thus, I restate my
expectations for cooperation and group longevity in the following hypothesis:

H2 : Terrorist groups that are more embedded in the network of terrorist groups will
survive longer.

4. Research Design

4.1. Network Data

I use both yearly alliance network data and group-year time-series cross-sectional data.
I began with the sample of 760 groups from 1970 to 2016 contained in Extended Data
on Terrorist Groups (EDTG; Hou, Gaibulloev, and Sandler 2020). I chose this as the
foundation because it is based on the Global Terrorism Database (GTD; START 2020)
but the curators did extensive cleaning to account for misspellings and aliases.

The network data are intended to capture cooperative relationships including joint
attacks, joint planning, training together, providing funding and weapons, or sharing
members, similar to the definition of cooperation/alliance used by Acosta (2016); Ba-
pat and Bond (2012); Horowitz and Potter (2014); Phillips (2019). Verbal support such
as announcing support of another group’s attack or pledging allegiance to a group are
not included as relationships in the data. The relationship data is a binary variable
coded at a dyad-year level.

I used existing datasets in order to code the alliance data. The main dataset that
I used for cooperative relationships was the Militant Group Alliances and Relation-
ships (MGAR; Blair et al. 2021) dataset. I chose this because it is the most widely
encompassing militant relationship dataset and includes groups that are in the GTD.
However, it includes many aliases and fronts as distinct groups, so I extensively cleaned
it to ensure that I was capturing the correct relationships and ensuring that no re-
lationships were missed by virtue of groups having a different name or being listed
multiple times under different names within the MGAR data. MGAR includes several
types of relationships ranging from concrete, material support to rhetorical support.
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Figure 1. 1975 Terrorist Alliance Network

I included all cooperative relationships coded in MGAR so long as they rose above
the level of merely verbally supportive relationships. In the MGAR data, this includes
financial, material, training, operations, or territorial support, which are all coded as
their own categories.

I also used data from Balcells, Chen, and Pischedda (2022), the Revolutionary
and Militant Organizations Dataset (REVMOD; Acosta 2019), UCDP’s Georeferenced
Event Dataset (Davies et al. 2024), and UCDP’s External Support Dataset (Meier
et al. 2022). There are caveats to the data collection. MGAR contains an extensive
amount of groups, including groups in the GTD, and as mentioned, this is why it was
used as the main source of relationship data. However, the aliases and misspellings led
some groups from the EDTG base sample of groups to not be included in the MGAR
data. The other datasets were used to fill these gaps. UCDP data include insurgencies,
and as such, smaller, lesser known terrorist organizations do not appear in the UCDP
data. This is a limitation. REVMOD ends in 2014 while EDTG ends in 2016. For
groups that had a cooperative relationship in REVMOD from 2011-2014, I made the
assumption that this relationship continued into 2015 and 2016.2

Figure 1 shows the 1975 alliance network with groups sizes scaled by the number of
alliances and colored according to the fatality count.

2If other datasets showed fighting between the groups in 2015 and 2016, I did not code a cooperative rela-

tionship, even if REVMOD had a cooperative relationship coded for 2011-2014.
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4.2. Siena

I use two modeling strategies. The first is the stochastic actor oriented model, im-
plemented with the RSiena package in R (Snijders et al. 2024a,b). Stochastic actor
oriented models implemented with RSiena are called Siena models. Siena models allow
for jointly modeling the evolution of a longitudinal network and a behavior. Here, I
use Siena models to jointly model the evolution of the alliance network of terrorist
groups and terrorist group failure.

Siena models assume that networks are states that gradually change over time (as
opposed to being comprised of quickly changing events). Because of this stability,
Siena models assume that changes to the network come from a Markov process such
that the network at any time point is determined by the network at the immediate
previous time point and not by information further in the past (Snijders, van de Bunt,
and Steglich 2010). The Siena model assumes a continuous time process but takes
data in the form of discrete time points, called waves — which in this paper are years
— and the model simulates the network process in the periods between the waves.
In the periods between the waves, the Siena model does agent-based simulations of
“ministeps” in order to simulate how the network state in one observed time wave
transitions to the network state at the next observed time wave (Snijders, van de
Bunt, and Steglich 2010; Snijders et al. 2024a). The ministeps are sequential such that
only one tie is made or dissolved at a ministep, and it is assumed that an actor’s choice
to create or dissolve a tie is based on the simulated network (Snijders et al. 2024a).
Many ministeps happen within one period.

In the case of this paper, a terrorist network may exist in, for example, 2010 and
2011. The network may look different between the two years because terrorist groups
may have stopped cooperating, started cooperating, ended and dropped out of the
network, or new groups may have sprung up. Having the observed network data for
2010 and 2011, Siena would then simulate many ministeps taken between 2010 and
2011 in order to get from the observed 2010 network to the observed 2011 network.

In the Siena model that models co-evolution of a network and a behavior, both the
network and behavior are governed by their own rate function and evaluation function.
In a traditional Siena model, the rate function models the frequency by which actors
have the opportunity to make a change (Snijders, Steglich, and Schweinberger 2007;
Snijders et al. 2024a). For the network, this is the frequency by which actors can
create or dissolve a tie. For the behavior, it is the frequency by which actors can
make a change to the behavior. The evaluation function, on the other hand, models
whether a choice will be made (Snijders, Steglich, and Schweinberger 2007; Snijders
et al. 2024a). Put another way, the rate function models whether an actor has the
opportunity to change, and the evaluation function models whether they will make
the change once receiving the opportunity. In the traditional Siena model, explanatory
variables typically are included in the respective network and behavior evaluation
functions so that the explanatory variables affect the probability of an actor making
a change to the network or behavior, respectively, once given the opportunity.

Rather than using this traditional Siena model, I use the Siena diffusion of innova-
tions model. (Greenan 2015) extends the Siena co-evolution model by using a behavior
variable that cannot decrease and by including covariates in the behavior rate function
instead of the evaluation function. She shows that this causes the model to become a
survival process, so that while the network changes still follow the traditional SAOM,
the rate function models the hazard of a behavior change rather than the frequency
of opportunities of a behavior change. Greenan’s diffusion model extension is usually
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used to study how an actor-level variable diffuses through a network, but because it
reduces to a proportional hazards model, I use it to model survival. It is not a model
of diffusion of group ending across a network because once the group ends, it drops
out of the network.

4.2.1. Siena Implementation

My data span 1970–2016. While there is no set amount of waves that can be modeled by
Siena, the modeling procedure has typically been used for a smaller amount of waves,
such as less than 10 (e.g. Greenan 2015; Hopp, Stoeger, and Ziegler 2020; Light et al.
2013, 2019; Snijders, van de Bunt, and Steglich 2010), and a high number of waves can
bring about difficulty with model convergence or time heterogeneity (Snijders 2018,
2022b). I therefore split my data into 1970–1985, 1985–2000, and 2000–2016 such that
each interval contains 16-17 waves,3 and I run separate models for each of the three
time intervals where the waves are years and the periods are the time in between each
discrete year time point. There are 203 groups in the 1970–1985 interval, 313 in the
1985–2000 interval, and 482 in the 2000–2016 interval.

Siena takes two dependent variables: the network and the behavior variable. The
dependent network variable is the longitudinal network of terrorist group alliances as
described above. The dependent behavior variable is terrorist group end. This comes
from EDTG. It is a binary variable coded 1 for the last year a group is active and 0
otherwise. The explanatory variables used in a Siena model are called effects.

I include dyadic and structural effects for the network part of the model.
Geometrically-weighted edgewise shared partnerships (gwesp) is a way to account for
triadic closures, which is the idea of “the friend of my friend is my friend,” but rather
than a straightforward count of triangles, which can make convergence difficult, gwesp
allows for decreasing importance of triadic closures as more triadic closures are added.
It is important to account for transitivity; as Asal, Phillips, and Rethemeyer (2022)
show, militant groups are more likely to form alliances with allies of their allies. The
degree activity plus popularity effect accounts for “the rich get richer,” or in other
words, groups that gain more ties simply because they already have many ties. A ho-
mophily effect for region is included in order to account for groups in the same region
being more likely to cooperate. Finally, I include an ego effect for duration, which is
simply the effect that duration has on a group forming ties. This is included because
groups that have been active longer may have more ties by virtue of having had more
opportunity to form them. Table 1 lists the network effects.

For the behavior variable, the first primary effect of interest is the fatalities caused by
a group. This comes from EDTG and I log it in base 2. I also include a squared term
(also logged) because I hypothesize an inverted-U shaped relationship. The second
primary effect of interest is network embeddedness, which I capture with a degree
effect in the rate function. This will model whether a terrorist group’s number of allies
affects its survival. This is currently the only way of capturing network embeddedness
within the behavior rate function.

My control variables come from EDTG. It is recommended to have few effects in a
Siena model (Snijders, van de Bunt, and Steglich 2010) and I therefore do not include
many of the control variables that are often included in terrorism literature. I include a
binary variable indicating whether a group has a religious orientation because groups

31985 and 2000 are included in two intervals so that the 1985–1986 and 2000–2001 periods are modeled. If an
interval ends in 1985 and the next starts in 1986, then the shift from the 1985 wave to the 1986 wave is never

modeled.
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with a religious ideology have been shown to have extended longevity (Blomberg,
Gaibulloev, and Sandler 2011; Gaibulloev, Piazza, and Sandler 2023; Piazza and Piazza
2020; Tokdemir 2021) and another binary variable indicating whether a group has a
territory goal. As a way of capturing strength, I include a binary measure of whether a
group has a base in more than one country.4 I also include a few base country effects,
which also come from EDTG. These include population (logged), GDP per capita
(logged), and polity. Finally, I include duration as an effect since I split the 1970–2016
time period into three intervals. All of these effects are included in the rate model. 5

Table 1. RSiena Network Effects
Effect Interpretation

Degree (density) Tendency of network to have ties. Functions as an intercept

GWESP Triadic closures. Friend of my friend is my friend effect

Degree activity + popular-

ity

Rich get richer effect

Same region Models whether alliances are more likely between groups in
the same region

Ego effect for duration Models whether duration affects the number of alliances a
group makes

4.3. Accelerated Failure Time Models

The advantage of RSiena is that it allows for modeling a dependent variable of interest
while accounting for network dependence. There are drawbacks, however, including not
being able to include many time waves or covariates. I also found time heterogeneity
that I was unable to unable to completely solve by including time dummy interactions
nor by modeling fewer periods of time, which will be discussed further in the results
section. Nevertheless, Siena offers a major advantage by modeling not only the full
network, but also how the evolution of this network affects survival and in turn how
survival affects the network.

To balance the drawbacks that come with using RSiena, I also include accelerated
an failure time (AFT) model. This is a more traditional survival model. The disad-
vantage is that network dependence is not modeled and groups are assumed to be
independent. The main advantage is that different measures intended to capture net-
work embeddedness can be included, as well as a number of potentially confounding
variables. Although the Siena diffusion model reduces to a proportional hazards model,
I use AFT models instead of Cox proportional hazards models because the time het-
erogeneity within the Siena models strongly suggests that the proportional hazards
assumption will not hold. The log-normal distribution is used The distribution of the
maximum survival of each group in the dataset is shown in Figure 2

To capture lethality, I again use the fatalities caused by a terrorist group (logged
in base 2 due to outliers). I include the squared version, also logged, because I expect
a curvilinear relationship. I use three measures of network embeddedess. The first is
degree centrality, which is a straightforward count of a terrorist group’s allies. The
second measure is eigenvector centrality, which is a measure of an actor’s centrality

4Models using attack diversity or share of transnational attacks out of total attacks did not converge.
5Within the longitudinal network, there are groups that enter late or leave early, called joiners and leavers

in RSiena. These are represented by structural zeroes in the network. Per (Snijders et al. 2024a), I include

a dummy variable for these “missing” actors fixed at a large negative rate in order to stop the model from
estimating behavior changes at ministeps for groups that are not in the network during the period being

modeled.
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that takes into the importance of its allies account (Bonacich 1987; Borgatti and
Everett 2006). A group connected to five groups that each have five other connections
will have a higher eigenvector centrality than a group connected to five groups that
each have one other connection. Notably, eigenvector centrality considers the entire
network, and not just the immediate connections. The third measure that I use for
network embeddedness is the ego network at order two. This is a count of a group, its
direct allies, and its allies’ direct allies. I also include the local clustering coefficient, or
local transitivity, as a control variable in order to capture some network dependence.
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Figure 2. Maximum duration distribution

Figure 3 shows the distribution of
yearly alliance counts and logged fatal-
ities per group in the dataset.

Several group or group-year control
variables are included. The data come
from EDTG. I control for group orienta-
tion, categorized as left, right, national-
ist, or religious, with religious as the ref-
erence category. I also control for group
goals, which are regime change, territory
goals, policy goals, or maintaining the
status quo, with status quo as the ref-
erence category. Attack diversity is in-
cluded because groups that are able to
shift tactics may evade detection and last
longer (Blomberg, Gaibulloev, and San-
dler 2011; Gahramanov, Gaibulloev, and
Younas 2024; Gaibulloev, Piazza, and
Sandler 2023; Gaibulloev, Hou, and San-

dler 2020). The share of transnational attacks is the proportion of a group’s attacks
that are transnational. Attacking transnationally has been shown to affect survival
(e.g. Gahramanov, Gaibulloev, and Younas 2024; Gaibulloev, Piazza, and Sandler
2023; Kim and Sandler 2021; Olzak 2022; Young and Dugan 2014). Third, a binary
indicator for multiple bases is included. Groups that have multiple bases may strong
and more capable of evading detection (Gaibulloev and Sandler 2013).

I also control for aspects of the base country. When a group has multiple base
countries, the measures are averaged. These measures include population logged in base
2, GDP per capita logged in base 2, region – with MENA as the reference category, and
V-Dem’s electoral democracy index and a squared version of the democracy index. V-
dem is used in the AFT models even though polity is used in the Siena models because
V-dem is the preferred measurement but caused convergence issues when included in
the Siena models.

5. Results

5.1. Siena

As explained in section 4.2.1, I break up the 1970–2016 data into three time intervals
and run the model separately for each time interval. Each model models the ministeps
taken between each year for all the years in that time interval. The results are seen in
Table 2. Model 1 covers 1970 through 1985, model 2 covers 1985 through 2000, and
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Figure 3. Independent Variable Distribution

model 3 covers 2000 through 2016. The network dynamics were included as part of
the evaluation function and the coefficients can be interpreted as log-probability ratios
(Snijders et al. 2024a). It is log-probability rather than log-odds because the model is
multinomial; the actors decide between many potential partners as well as the option
not to make a tie rather than just deciding to form a tie or not form a tie (Snijders
et al. 2024a; Snijders 2022a). The behavior dynamics were included as part of the rate
function and the estimates can be interpreted as effects on the hazard of group end.
I will first interpret the effects of Table 2 but there is a caveat that the third time
interval (model 3 of Table 2) has time heterogeneity for many of the parameters during
many periods, and a number of steps are taken in order to attempt to address this,
discussed further below.

5.1.1. Network Dynamics

The degree (density) effect represents the tendency of the network to have ties and
functions as an intercept. The parameter is negative, suggesting that the probability
of having ties is low. The GWESP effect in model 1 has a coefficient of 1.064, meaning
that the probability of a group creating or maintaining an alliance that closes a triangle
is e1.064 = 2.898 times higher than creating or maintaining a tie that does not close a
triangle, all else being equal. The effect is similar in models 2 and 3.

The degree activity plus popularity effect is insignificant and substantially almost
nonexistent in model 1, meaning that between 1970 and 1985, there is no evidence that
groups with a higher number of alliances are more likely to create or form alliances
than groups that do not have a high number of alliances. In models 2 and 3, the
coefficient is significant but the exponentiated coefficient is close to 1 in both models,
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Table 2. Main Siena Models

(1) (2) (3)
Effect 1970–1985 1985–2000 2000–2016

est. (s.e.) est. (s.e.) est. (s.e.)

Network Dynamics

Degree (density) –2.156∗∗∗ (0.145) –2.590∗∗∗ (0.135) –2.860∗∗∗ (0.072)
GWESP (69) 1.064∗∗∗ (0.187) 1.074∗∗∗ (0.122) 0.917∗∗∗ (0.069)
Degree act+pop 0.001 (0.014) 0.034∗∗∗ (0.010) 0.025∗∗∗ (0.004)
Same region 1.000∗∗∗ (0.135) 0.894∗∗∗ (0.118) 0.850∗∗∗ (0.072)
Duration ego –0.006 (0.020) 0.003 (0.009) 0.005 (0.003)
Behaviour Dynamics

Number of Allies –0.412∗∗ (0.152) –0.187∗ (0.084) –0.205∗∗∗ (0.061)
Fatalities (log) 1.998∗ (0.868) 1.284† (0.705) 0.076 (1.367)
Fatalities sq. (log) –1.005∗ (0.454) –0.644† (0.359) 0.052 (0.691)
Territory Goal –0.554 (0.388) –1.328∗∗∗ (0.358) –0.064 (0.236)
Religious –0.920 (0.609) –1.202∗∗ (0.388) –0.107 (0.256)
Multiple Bases –0.048 (0.345) 0.095 (0.281) 0.330 (0.262)
Population (log) 0.010 (0.098) –0.272∗∗∗ (0.067) –0.116 (0.072)
GDP per capita (log) 0.492∗∗∗ (0.134) 0.139∗ (0.071) 0.266∗∗ (0.083)
Polity –0.063∗ (0.030) –0.003 (0.025) –0.028 (0.022)
Duration –0.115∗ (0.045) –0.029∗ (0.014) –0.034∗∗∗ (0.010)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

Convergence t ratios all < 0.05.

Overall maximum convergence ratio Model 1: 0.23; Model 2: 0.19; Model 3: 0.14.

suggesting that groups with a high number of alliances are only very marginally more
likely to form or maintain ties than groups that do not have a high number of alliances.
The coefficient for same region is positive and significant. In model 1, a terrorist group
is e1.000 = 2.718 more likely to form or maintain alliances with groups in the same
region than with groups in different regions. The effect is similar in models 2 and 3.
The effect of duration is very small and insignificant in all three models, meaning that
there is no evidence that older groups are more likely to form or maintain alliances.

5.1.2. Behavior Dynamics

In models 1 and 2, the effect fatalities is positive and significant. Fatalities is logged
in base 2, so a doubling of fatalities leads to a (e1.998 − 1) ∗ 100 = 637.4% increase
in the hazard of ending in model 1 and the effect is 261.1% in model 2. These ef-
fects seem quite large, but the significant and negative effect when fatalities is squared
means that each time fatalities is doubled, its effect on the hazard of ending is de-
creased more and more until the relationship changes signs, resulting in an inverted-U
shape whereby the hazard of ending is highest at an intermediate level of fatalities. In
model 1, the effect of fatalities is reduced by (1 − e–1.005) ∗ 100 = 63.4% for the first
doubling of fatalities, and this reduction grows quadratically. In model 2, the initial
reduction in the effect of fatalities is 47.5%. In model 3, the effects are not significant,
and the quadratic effect is not in the expected direction. However, testing for time
heterogeneity revealed substantial time heterogeneity. I take measure to account for
this heterogeneity, discussed below.

The degree effect on the hazard of ending is negative and significant in all three
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models of Table 2. In model one, the effect of degree is that having one more ally
decreases a group’s hazard of ending by (1− e−0.412) ∗ 100 = 33.8%. In model 2, each
additional ally decreases the hazard of ending by 17.1%, and in model 3, each additional
ally decreases the hazard of ending by 18.5%. While the substantive decrease in the
hazard of ending caused by having one additional ally is different across the models,
the significant negative effects suggest strong support for H2.

Being based in a country with a higher GDP per capita appears to increase the
hazard of ending. This is likely because GDP per capita captures some aspects of
state capability. In model 1, a doubling of the base country’s GDP per capita leads to
a (e0.492 − 1) ∗ 100 = 63.6% increase in the hazard of ending. In model 2, this effect is
14.9%, and in model 3, this effect is 30.5%. A higher duration appears to decrease the
hazard of ending across all three models. A one year increase in age leads to a group’s
hazard of ending being (1−e−0.115)∗100 = 10.9% lower. This decrease is much smaller
in model 2 (2.9%) and 3 (3.3%).

5.1.3. Time Heterogeneity

I tested the three main models for time heterogeneity. The 1970–1985 model had no
changes in period 8 (the shift from 1977 to 1978) and period 9 (the shift from 1978
to 1979) so to be able to run the time tests, I first reran the model for the 1970–1985
interval by having one model for 1970–1977 and a second model for 1979–1985. Siena
models are complex and as such can become overloaded with parameters; for this
reason, I dropped the control variables when modeling these smaller intervals. These
results for these models are reported in Table A1 in the appendix. The significance
and magnitude of the network dynamics are not dramatically different than from the
main model in Table 2. For the behavior dynamics, the degree effect on the hazard of
ending still has significant results that suggest a decrease in the hazard of ending, but
between the 1970–1977 model and 1979–1985, the magnitude of the effects is different.
The effect of fatalities is of a similar magnitude and retains significance, but fatalities
squared loses significance in the 1970-1977 model. This may be due to removing control
variables.

Results of the time tests are reported in Appendix A.1. The tests show whether the
null hypothesis of no time heterogeneity can be rejected separately for each period
of each parameter. Little to no time heterogeneity is suggested by these tests for
1970–2000. For the 2000–2016 interval (model 3 of Table 2), the null hypothesis of
no time heterogeneity can be rejected many periods of many parameters, particularly
the network dynamics. This is tricky to deal with. Time heterogeneity is typically
accounted for by incorporating a time dummy for the parameter and period for which
there is time heterogeneity. RSiena models are prone to becoming overloaded with
effects, which has the result of making all estimates appear insignificant. Therefore,
adding so many time dummies would overload the model.

However, when testing for time heterogeneity, period 1 is left out as a baseline.
In this case, period 1 includes wave 2000 and wave 2001. I therefore considered that
rather than time heterogeneity existing for a majority of periods, it instead may exist
in period 1. This is supported by Asal, Phillips, and Rethemeyer (2022), who find that
the insurgent network varied greatly before and after 9-11. I therefore reran the model
for that time period but with 2000 and 2001 removed. The results can be seen in Table
3. Here, the estimates for fatalities and fatalities squared are in the expected direction,
which is a change from the initial model, but they remain insignificant. Testing for
time heterogeneity in this new model revealed that there was still time heterogeneity
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Table 3. Siena Model 2002–2016

Effect est. (s.e.)

Network Dynamics
Degree (density) –2.877∗∗∗ (0.075)
GWESP (69) 0.852∗∗∗ (0.072)
Degree act+pop 0.026∗∗∗ (0.004)
Same region 0.832∗∗∗ (0.075)
Duration ego 0.005 (0.003)
Behaviour Dynamics

Number of Allies –0.174∗∗ (0.062)
Fatalities (log) 0.473 (0.957)
Fatalities sq. (log) –0.190 (0.483)
Territory Goal 0.035 (0.263)
Religious 0.074 (0.272)
Multiple Bases 0.371 (0.301)
Population (log) –0.092† (0.055)
GDP per capita (log) 0.160∗ (0.064)
Polity –0.027 (0.024)
Duration –0.036∗∗ (0.011)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

convergence t ratios all < 0.05.

Overall maximum convergence ratio 0.12.

for too many parameters in too many periods to be able to include time dummies in
the model.

Therefore, the next strategy that I tried was splitting the models into smaller time
intervals, so I modeled an interval of 2000–2008 and another of 2008–2016. The initial
results are reported in Appendix A.1. I tested these models for time heterogeneity and
reran the models with time dummies; the results are shown in Table 4. With some time
heterogeneity accounted for, the effects of fatalities and fatalities squared on the hazard
of ending are in the expected direction for 2008–2016, but remain insignificant. The
effects of these variables for 2000–2008 are still in the opposite direction from what was
expected. Together, this aligns with the effects being in the expected direction in the
2002–2016 model, and provides more evidence that 2000 and 2001 are abnormal waves.
Additionally, duration loses significance for the 2000–2008 model, but did not lose
significance in the 2008–2016 model nor in the 2002–2016 model, which again lightly
suggests that 2000 and 2001 are abnormal years. Moreover, the very large standard
errors suggest that there is potentially new time heterogeneity revealed when time in
some periods is controlled for and indeed the tests for this, the results of which are
reported in Appendix A.1, reveal that there is quite a bit of new time heterogeneity,
but to control for further periods would overload the model.

Overall, the Siena results show moderate support for H1. When modeling 1970
through 2000, the results for fatalities and the squared effect are significant and in the
expected direction. When attempting to account for time heterogeneity, results are
insignificant but in the expected direction when 2000 and 2001 are not included. The
insignificance is likely due to leftover time heterogeneity that is not accounted for. This
points to terrorist group lethality having an inverted-U shaped relationship with ter-
rorist group end, suggesting some support for H1. Meanwhile, there is strong support
for H2. The effect of having another ally is significant decreases the hazard of ending
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Table 4. Siena Models for Third Time Interval with Time Dummies

(1) (2)

Effect 2000-2008 2008-2016

est. (s.e.) est. (s.e.)

Network Dynamics

Degree (density) –2.779∗∗∗ (0.116) –2.908∗∗∗ (0.106)
GWESP (69) 0.874∗∗∗ (0.124) 0.957∗∗∗ (0.114)
Degree act+pop 0.029∗∗∗ (0.006) 0.019∗∗∗ (0.006)
Same region 0.910∗∗∗ (0.113) 0.800∗∗∗ (0.106)
Duration ego 0.011† (0.006) 0.007 (0.005)

Dummy2 ego x GWESP (69) 0.619† (0.364) . .
Dummy3 ego x GWESP (69) . . 1.172∗∗ (0.438)
Dummy4 ego x GWESP (69) –1.488∗∗ (0.486) . .
Dummy6 ego x GWESP (69) –0.067 (0.207) –0.538† (0.278)
Dummy7 ego x GWESP (69) –0.388 (0.308) –0.029 (0.382)
Dummy8 ego x GWESP (69) –1.108∗∗ (0.358) . .

Dummy3 ego x Degree act+pop –0.038∗∗ (0.013) –0.030 (0.023)
Dummy7 ego x Degree act+pop –0.020† (0.011) –0.054∗ (0.024)

Dummy3 ego x Same region . . 0.116 (0.416)
Dummy6 ego x Same region . . –0.298 (0.195)
Dummy7 ego x Same region –0.308 (0.236) . .
Dummy8 ego x Same region –0.089 (0.241) . .

Dummy3 ego . . 0.025 (0.440)
Dummy7 ego . . 0.241 (0.213)
Behaviour Dynamics

Number of Allies –0.249∗∗ (0.076) –0.003 (0.075)
Fatalities (log) –0.431 (1.371) 0.278 (1.328)
Fatalities sq. (log) 0.295 (0.693) –0.135 (0.671)
Duration –0.015 (0.012) –0.073∗∗ (0.024)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

Convergence t ratios all < 0.07.

Overall maximum convergence ratio Model 1: 0.20; Model 2: 0.22.
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in all models except the 2008–2016 model. This strongly supports the hypothesis that
terrorist groups that are more embedded within the network last longer.

5.2. Accelerated Failure Time Models

I use a second modeling strategy due to the time heterogeneity within the Siena models.
I use AFT models because the Siena models as implemented reduce to a proportional
hazards model, but the excess time differences suggests that the proportional hazards
assumption may not hold, and AFT models allow for non-constant effects over time.
Of note is that whereas the Siena model showed the effect of the covariates on the
hazard of ending, the AFT model shows the effect of the covariates on survival time.
This means that while H1 posits an inverted-U shaped relationship between lethality
and survival in the Siena model, here H1 posits a U-shaped relationship (in which
groups with the lowest and highest levels of lethality survive longer).

AFT models were run using the Eha package in R (Broström 2020). I ran the
models using the log-normal, Weibull, log-logistic, and extreme value distributions.
AIC and BIC are best with the log-normal distribution, so results from this model are
discussed. Results from the log-logistic and extreme value distributions are included in
the appendix. There is not a major change in substantive results between the different
distributions.

There is the possibility that network dependence is not entirely being captured by
the centrality and clustering terms. I therefore employ shared frailty models with the
same terms but with a yearly frailty effect. A frailty is a random effect for survival
models; a yearly frailty means that all groups in a given year will be affected by the
same unobserved factor. While not accounting for network dependence directly, it does
create and account for dependence between the groups by correlating their hazards.
For the frailty models, I use Weibull hazards with a gamma frailty distribution.6

The Weibull models with and without frailty are reported in Table 6. The frailty
parameter was small and insignificant, which means that there is no evidence that there
is unobserved heterogeneity across different years. Additionally, the coefficients do not
substantively change when frailty is included, and the estimates from the Weibull
models with and without frailty are very similar to the log-normal model. I therefore
discuss the results for the log-normal model because it was the best fitting model.

The main results can be seen in Table 5. Model 1 uses degree centrality for net-
work embeddedness, model 2 includes eigenvector centrality, and model 3 includes the
neighborhood of order 2. The regression coefficients are exponentiated and standard
errors have been transformed using the Delta method.7 AFT models act directly on
the time to event; the exponentiated coefficients can be interpreted as the factor by
which the survival time is increased or decreased.8

Looking to Table 5, the effect of fatalities is in the expected direction and significant.
Fatalities is logged in base 2 so that the effect can be interpreted as the effect that a
twofold increase in fatalities has on the time to event. A doubling of fatalities multiplies
the survival time by a factor close to 0.35 in all three models, which reduces the time
to termination by about 65%, or accelerates the time to termination by a factor of
1/0.35 = 2.86. However, the exponentiated coefficient for fatalities squared is about

6Weibull models with a log-normal frailty distribution were run and the frailty parameter was significant, but

AIC was very poor, so these are not reported.
7P-Values come from the original set of coefficients and standard errors before transformation.
8I used the “lifeExp” parameter when running the models in R so that an exponentiated coefficient below 1

decreases life expectancy or accelerates the time to event, and an exponentiated coefficient above 1 increases
life expectancy or decelerates the time to event.
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1.5 and significant in all three models. This suggests that the increase in time to event
associated with fatalities becomes less strong with each doubling of fatalities until the
relationship changes signs. This provides strong support for H1.

Table 5.: Accelerated Failure Time Models, Log-Normal Distribu-
tion

(1) (2) (3)

Fatalities (log) 0.358∗∗ 0.352∗∗ 0.358∗∗

(0.145) (0.145) (0.147)

Fatalities Sq. (log) 1.523∗∗ 1.580∗∗ 1.553∗∗

(0.311) (0.329) (0.323)

Number of Allies 1.294∗∗∗

(0.065)

EV Centrality 1.015∗∗

(0.007)

Neighborhood 1.024∗∗∗

(0.010)

Clustering 0.865 1.603∗ 1.365
(0.244) (0.443) (0.395)

Left 0.648∗ 0.625∗ 0.698
(0.154) (0.155) (0.175)

Right 0.377∗∗∗ 0.333∗∗∗ 0.374∗∗∗

(0.134) (0.124) (0.140)

Nationalist 0.592∗∗ 0.561∗∗ 0.613∗∗

(0.134) (0.131) (0.144)

Regime 0.524∗ 0.512∗ 0.495∗∗

(0.177) (0.181) (0.175)

Policy 0.431∗∗ 0.408∗∗ 0.401∗∗

(0.149) (0.147) (0.144)

Territory 0.965 1.054 1.012
(0.331) (0.377) (0.361)

Attack Diversity 6.741∗∗∗ 7.421∗∗∗ 7.632∗∗∗

(3.153) (3.593) (3.679)

Share Trans. Terr. 0.250∗∗∗ 0.248∗∗∗ 0.256∗∗∗

(0.038) (0.039) (0.040)

Multiple Bases 0.918 0.999 0.970
(0.165) (0.185) (0.180)

Pop (log) 1.039 1.039 1.032
(0.045) (0.046) (0.046)

GDP/Pop (log) 0.954 0.952 0.958
(0.064) (0.067) (0.067)
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Democracy 0.732 0.853 0.791
(0.273) (0.328) (0.305)

East Asia & Pacific 1.749∗ 1.728∗ 1.782∗

(0.520) (0.528) (0.546)

Europe & Central Asia 0.861 0.767 0.803
(0.209) (0.191) (0.200)

Latin Am. & Caribbean 0.993 0.935 0.948
(0.275) (0.269) (0.272)

North America 1.315 1.159 1.244
(0.465) (0.425) (0.457)

South Asia 1.389 1.312 1.419
(0.472) (0.460) (0.497)

Sub-Saharan Africa 2.364∗∗∗ 2.074∗∗ 2.269∗∗

(0.787) (0.715) (0.785)

log(scale) 3.353∗∗ 3.520∗∗∗ 3.473∗∗

(1.311) (1.361) (1.359)

log(shape) -0.253∗∗∗ -0.294∗∗∗ -0.289∗∗∗

(0.046) (0.047) (0.047)

Observations 7,777 7,777 7,777
AIC 2049.981 2077.055 2074.463
BIC 2216.995 2244.069 2241.478
Log Likelihood −1,000.990 −1,014.528 −1,013.232

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All three variables intended to capture network embeddedness are above 1 and
significant, suggesting that network embeddedness increases survival. The effects are
strongest when network embeddedness is measured as the number of allies, or degree
centrality, seen in model 1. Having one more ally increases the time to termination by
a factor of 1.294, or a 29.4% increase from the baseline in the time it takes for a group
to fail. When network embeddedness is measured as the neighborhood of order 2, or
a group, its allies, and its allies’ allies, the effect on group termination is significant
but weak. Having one more node in the neighborhood increases a group’s time to
termination by a factor of 1.024, or 2.4%. When network embeddedness is measured as
eigenvector centrality — the importance of allies — a one-unit increase in eigenvector
centrality increases the time to termination by 1.5%. Overall, this provides support
for H2.

The effect of clustering is ambiguous, with the direction and significance of the
results changing between the models. Being a left wing group is marginally significant
in models 1 and 2 and the exponentiated coefficient is about 0.6, which suggests a
decrease in survival by 40%, or an acceleration in the time to termination by a factor
of 1/0.6 = 1.67. In other words, compared to the reference category of religious groups,
being a left wing group is associated with a quicker termination. Being a right wing
group has a much quicker time to termination than being a religious group and this
is significant in all 3 models. The effect of being a nationalist group compared to a
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religious group is similar to the effect of being a left wing group. This complements the
results of the Siena models, which suggest that being religious decreases the hazard
of ending, compared with not being religious. Turning to goals, compared to groups
with the goal of maintaining the status quo, groups with regime change goals and
policy goals see a decrease in survival time. The exponentiated coefficients for having
a territory goal are insignificant and close to 1 in all three models, meaning that there
is no evidence that having a territory goal affects group termination. The RSiena
results showed territory goals as decreasing the hazard of ending, but this was only
significant in the 1985-2000 model.

Attack diversity, the share of transnational attacks out of total attacks, and multiple
bases were included as different measures of group strength. Attack diversity and the
share of transnational attacks have significant effects across all three models, but the
effects are in different directions for the two covariates, with an increase in attack
diversity leading to an increase in survival, which lends credence to the idea that
terrorist groups that can diversity their attacks can evade detection. On the other
hand, an increase in the share of transnational attacks shortens survival time. One
possibility for this is that groups that attack transnationally have more opportunities
to be caught. There is no evidence that having more than one base affects survival.

The models reveal no evidence that population, GDP per capita, or electoral democ-
racy affect survival. Finally, results are significant for only two regions. Compared to
the MENA region, having a base in the East Asia and Pacific region increases sur-
vival time by a factor of about 1.7, and having a base in Sub-Saharan Africa increases
survival time by a factor of more than 2.

Table 6.: Accelerated Failure Time Models: Weibull Models with
and without Frailty

No Frailty With Frailty

(1) (2) (3) (4) (5) (6)

Fatalities (log) 0.397∗∗ 0.411∗∗ 0.403∗∗ 0.398∗∗ 0.415∗∗ 0.407∗∗

(0.164) (0.172) (0.169) (0.166) (0.181) (0.167)
Fatalities Sq. (log) 1.464∗ 1.484∗ 1.491∗ 1.463∗ 1.476∗ 1.483∗

(0.308) (0.315) (0.317) (0.310) (0.331) (0.310)
Number of Allies 1.305∗∗∗ 1.298∗∗∗

(0.078) (0.078)
EV Centrality 1.015∗∗ 1.015∗∗

(0.008) (0.007)
Neighborhood 1.017∗ 1.016∗

(0.010) (0.009)
Clustering 0.679 1.273 1.221 0.685 1.243 1.213

(0.193) (0.342) (0.345) (0.195) (0.327) (0.336)
Left 0.537∗∗ 0.537∗∗ 0.574∗∗ 0.541∗∗ 0.544∗∗ 0.578∗∗

(0.130) (0.133) (0.145) (0.133) (0.132) (0.141)
Right 0.340∗∗∗ 0.317∗∗∗ 0.340∗∗∗ 0.354∗∗∗ 0.339∗∗∗ 0.360∗∗∗

(0.107) (0.102) (0.112) (0.113) (0.108) (0.114)
Nationalist 0.602∗∗ 0.585∗∗ 0.611∗∗ 0.601∗∗ 0.589∗∗ 0.614∗∗

(0.138) (0.138) (0.146) (0.138) (0.134) (0.141)
Regime 0.611 0.602 0.586 0.614 0.610 0.598

(0.200) (0.203) (0.199) (0.199) (0.212) (0.201)
Policy 0.442∗∗ 0.425∗∗ 0.418∗∗ 0.454∗∗ 0.448∗∗ 0.442∗∗

(0.150) (0.147) (0.146) (0.152) (0.160) (0.153)
Territory 1.013 1.173 1.149 1.013 1.152 1.137

(0.343) (0.406) (0.402) (0.342) (0.416) (0.395)
Attack Diversity 7.755∗∗∗ 8.421∗∗∗ 8.843∗∗∗ 7.423∗∗∗ 7.975∗∗∗ 8.436∗∗∗

19



(3.766) (4.148) (4.347) (3.610) (4.336) (4.085)
Share Trans. Terr. 0.219∗∗∗ 0.209∗∗∗ 0.217∗∗∗ 0.232∗∗∗ 0.227∗∗∗ 0.234∗∗∗

(0.034) (0.033) (0.034) (0.038) (0.037) (0.038)
Multiple Bases 0.855 0.888 0.892 0.844 0.870 0.879

(0.140) (0.149) (0.152) (0.140) (0.143) (0.145)
Pop (log) 1.064 1.055 1.049 1.060 1.049 1.043

(0.047) (0.048) (0.049) (0.046) (0.051) (0.050)
GDP/Pop (log) 0.951 0.962 0.969 0.948 0.958 0.966

(0.062) (0.065) (0.065) (0.062) (0.075) (0.065)
Democracy 0.916 0.963 0.919 0.873 0.913 0.879

(0.349) (0.377) (0.363) (0.333) (0.383) (0.340)
East Asia & Pacific 1.589 1.558 1.588 1.581 1.536 1.562

(0.491) (0.491) (0.505) (0.489) (0.468) (0.481)
Europe & Central Asia 0.960 0.842 0.848 0.986 0.884 0.882

(0.222) (0.196) (0.199) (0.230) (0.200) (0.203)
Latin Am. & Caribbean 0.959 0.899 0.881 0.963 0.908 0.885

(0.252) (0.241) (0.237) (0.253) (0.243) (0.232)
North America 1.309 1.256 1.282 1.330 1.263 1.277

(0.407) (0.403) (0.415) (0.423) (0.392) (0.409)
South Asia 1.341 1.321 1.407 1.345 1.328 1.409

(0.490) (0.494) (0.530) (0.499) (0.483) (0.516)
Sub-Saharan Africa 1.970∗∗ 1.769∗ 1.847∗ 1.911∗∗ 1.703∗ 1.771∗

(0.632) (0.579) (0.614) (0.622) (0.569) (0.576)
Frailty Theta 0.0005 0.0001 0.0000

(0.0020) (0.0019) (0.0000)
log(scale) 3.153∗∗ 3.383∗∗ 3.372∗∗ 3.290 3.617 3.590

(1.294) (1.352) (1.361)
log(shape) 0.002 -0.023 -0.028 -0.054 -0.086 -0.081

(0.049) (0.050) (0.050)

Observations 7,777
AIC 2072.926 2096.964 2098.343 2073.368 2095.832 2097.762
BIC 2239.94 2263.978 2265.357
Log Likelihood -1,012.463 -1,024.482 -1,025.172 -1011.684 -1022.916 -1023.881

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6. Conclusion

In this article, I explored the ambiguity that has been found with regard to terrorist
group lethality on survival and I re-examined existing findings on alliances and lethality
in a network context. I used two modeling techniques that complement each other and
allow me to explore the effect of both lethality and alliances on longevity. Siena models
allowed me to model the co-evolution of the terrorist alliance network, the effect of
this network on survival, and — as groups terminated and dropped out — the effect
of survival in turn on the network. AFT models allowed me to use different measures
of network embeddedness to test my hypothesis on group alliances and survival while
also examining the curvilinear effect of lethality on survival, and additionally provided
a robustness check for the Siena models.

Even with time heterogeneity in the Siena models, the results of the Siena models
and AFT model taken together support the hypothesis that lethality has a curvilinear
relationship with survival whereby groups with intermediate levels of lethality are
most likely to end. The models showed strong support for the hypothesis that network
embeddedness increases survival, which I theorize in this paper is due to the increased
capacity that comes from pooling resources and sharing tactical information.

20



This article contributes to the terrorism literature in several ways. First, while many
studies include group lethality as a control variable through various measurements in
studies of terrorist longevity, few directly examine the effect of lethality on survival.
This article contributes by using existing literature to build a novel hypothesis about
the effect of lethality on survival. Second, I test the effect of lethality while incorporat-
ing network embeddedness. Third, while many studies explore the effect of alliances
on survival, few do so in a network context.

Finally, the use of network analysis is still rare within the terrorism literature even
though terrorist groups are not independent. I therefore contribute by demonstrating
an application of a statistical network model to terrorist group survival. Furthermore,
the diffusion extension to the Siena model has thus far been used to explicitly model
diffusion of a an innovation through a network; I use it instead to model survival such
that groups drop out once adopting the innovation.

Future work can build from this by researching how alliances affect lethality in
a network context. Additionally, future work can also bring in data on the rivalry
network because just as groups cooperate, they also fight one another. Finally, on the
methodological side, while this paper uses a network survival model — something that
has not been done in the terrorism literature and in general has rarely been done when
using time-varying covariates — extensions to existing survival models should be made
in order to account for network dependence so that the RSiena diffusion of innovations
extension is not the only method for modeling both survival and the network.
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Appendix A.

A.1. Time Heterogeneity Tests

This section includes the estimates from the time heterogeneity tests and the new
models that were run for 1970–1977 and 1979–1985. A p-value under 0.05 in the time
test means that the null hypothesis of no time heterogeneity cannot be rejected.

Table A1. Siena Models for First Time Interval

(1) (2)
1970–1977 1979–1985

Effect est. (s.e.) est. (s.e.)

Network Dynamics

degree (density) –3.162∗∗∗ (0.403) –1.805∗∗∗ (0.227)
GWESP (69) 1.078∗∗∗ (0.313) 0.965∗∗∗ (0.289)
Degree act+pop 0.097∗∗ (0.036) –0.040 (0.026)
Same region 1.339∗∗∗ (0.292) 0.912∗∗∗ (0.188)
Duration ego 0.174† (0.094) 0.004 (0.030)
Behaviour Dynamics

Number of Allies –1.060∗ (0.498) –0.290† (0.160)
Fatalities (log 2.515† (1.386) 2.879∗∗ (1.107)
Fatalities sq. (log) –1.146 (0.720) –1.517∗∗ (0.588)
Duration –0.073 (0.136) –0.093∗ (0.047)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

Convergence t ratios all < 0.06.

Overall maximum convergence ratio Model 1: 0.12; Model 2: 0.16.

Table A2. Siena Models for 2000–2016 Without Time Dummies

(1) (2)
Effect 2000–2008 2008–2016

est. (s.e.) est. (s.e.)

Network Dynamics

Degree (density) –2.775∗∗∗ (0.107) –2.923∗∗∗ (0.099)
GWESP (69) 0.911∗∗∗ (0.091) 0.873∗∗∗ (0.106)
Degree act+pop 0.029∗∗∗ (0.005) 0.022∗∗∗ (0.005)
Same region 0.905∗∗∗ (0.105) 0.810∗∗∗ (0.100)
Duration ego 0.010† (0.006) 0.006 (0.004)
Behaviour Dynamics

Number of Allies –0.252∗∗∗ (0.075) –0.002 (0.076)
Fatalities (log) –0.391 (1.354) 0.272 (1.322)
Fatalities sq. (log) 0.276 (0.685) –0.132 (0.667)
Duration –0.015 (0.012) –0.073∗∗ (0.025)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

Convergence t ratios all < 0.08.

Overall maximum convergence ratio Model 1: 0.21; Model 2: 0.23.

Table A3.: Time Heterogeneity Test for 1970–1977
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One.Step.Est. p.Value
(*)Dummy2:degree (density) -2.51 0.73
(*)Dummy3:degree (density) -2.00 0.26
(*)Dummy4:degree (density) -3.13 0.03
(*)Dummy5:degree (density) -3.12 0.09
(*)Dummy6:degree (density) -3.68 0.21
(*)Dummy7:degree (density) -5.64 0.11
(*)Dummy2:GWESP (69) 1.53 0.22
(*)Dummy3:GWESP (69) 3.05 0.35
(*)Dummy4:GWESP (69) 2.13 0.10
(*)Dummy5:GWESP (69) 1.34 0.63
(*)Dummy6:GWESP (69) 2.90 0.97
(*)Dummy7:GWESP (69) 3.05 0.00
(*)Dummy2:degree act+pop -0.19 0.62
(*)Dummy3:degree act+pop -0.38 0.04
(*)Dummy4:degree act+pop -0.18 0.07
(*)Dummy5:degree act+pop -0.21 0.81
(*)Dummy6:degree act+pop -0.22 0.29
(*)Dummy7:degree act+pop -0.04 0.00
(*)Dummy2:same region 2.97 0.84
(*)Dummy3:same region 2.79 0.28
(*)Dummy4:same region 2.01 0.00
(*)Dummy5:same region 4.82 0.03
(*)Dummy6:same region 3.36 0.22
(*)Dummy7:same region 5.00 0.00
(*)Dummy2:degree effect on rate endbeh 7077 (rate) -0.18 0.29
(*)Dummy3:degree effect on rate endbeh 7077 (rate) 0.04 0.64
(*)Dummy4:degree effect on rate endbeh 7077 (rate) 2.91 0.00
(*)Dummy5:degree effect on rate endbeh 7077 (rate) -0.21 0.46
(*)Dummy6:degree effect on rate endbeh 7077 (rate) -0.07 0.53
(*)Dummy7:degree effect on rate endbeh 7077 (rate) 0.42 0.70
(*)Dummy2:effect logdeaths on rate endbeh 7077 (rate) 1.21 0.55
(*)Dummy3:effect logdeaths on rate endbeh 7077 (rate) -0.39 0.66
(*)Dummy4:effect logdeaths on rate endbeh 7077 (rate) 0.68 0.00
(*)Dummy5:effect logdeaths on rate endbeh 7077 (rate) 2.34 0.80
(*)Dummy6:effect logdeaths on rate endbeh 7077 (rate) 0.62 0.52
(*)Dummy7:effect logdeaths on rate endbeh 7077 (rate) 2.69 0.26
(*)Dummy2:effect logdeathssq on rate endbeh 7077 (rate) -0.40 0.59
(*)Dummy3:effect logdeathssq on rate endbeh 7077 (rate) 0.40 0.69
(*)Dummy4:effect logdeathssq on rate endbeh 7077 (rate) 0.77 0.00
(*)Dummy5:effect logdeathssq on rate endbeh 7077 (rate) -0.86 0.76
(*)Dummy6:effect logdeathssq on rate endbeh 7077 (rate) -0.07 0.55
(*)Dummy7:effect logdeathssq on rate endbeh 7077 (rate) -1.15 0.22

Table A4.: Time Heterogeneity Test for 1979–1985

One.Step.Est. p.Value
(*)Dummy2:degree (density) 0.11 0.59
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(*)Dummy3:degree (density) 0.38 0.38
(*)Dummy4:degree (density) 0.93 0.00
(*)Dummy5:degree (density) 0.19 0.01
(*)Dummy6:degree (density) 0.60 0.78
(*)Dummy2:GWESP (69) -1.59 0.01
(*)Dummy3:GWESP (69) 0.31 0.47
(*)Dummy4:GWESP (69) 0.35 0.00
(*)Dummy5:GWESP (69) 1.29 0.00
(*)Dummy6:GWESP (69) 1.47 0.16
(*)Dummy2:degree act+pop -0.07 0.19
(*)Dummy3:degree act+pop -0.07 0.20
(*)Dummy4:degree act+pop -0.21 0.00
(*)Dummy5:degree act+pop -0.07 0.00
(*)Dummy6:degree act+pop -0.14 0.72
(*)Dummy2:same region 1.11 0.82
(*)Dummy3:same region 0.10 0.70
(*)Dummy4:same region 0.11 0.01
(*)Dummy5:same region 0.75 0.00
(*)Dummy6:same region -0.11 0.63
(*)Dummy2:degree effect on rate endbeh 7985 (rate) 0.64 0.89
(*)Dummy3:degree effect on rate endbeh 7985 (rate) 0.52 0.79
(*)Dummy4:degree effect on rate endbeh 7985 (rate) 0.24 0.23
(*)Dummy5:degree effect on rate endbeh 7985 (rate) 0.76 0.22
(*)Dummy6:degree effect on rate endbeh 7985 (rate) 0.50 0.77
(*)Dummy2:effect logdeaths on rate endbeh 7985 (rate) -4.76 0.10
(*)Dummy3:effect logdeaths on rate endbeh 7985 (rate) -0.04 0.56
(*)Dummy4:effect logdeaths on rate endbeh 7985 (rate) -1.78 0.47
(*)Dummy5:effect logdeaths on rate endbeh 7985 (rate) 1.65 0.92
(*)Dummy6:effect logdeaths on rate endbeh 7985 (rate) 0.77 0.94
(*)Dummy2:effect logdeathssq on rate endbeh 7985 (rate) 1.66 0.18
(*)Dummy3:effect logdeathssq on rate endbeh 7985 (rate) -0.66 0.51
(*)Dummy4:effect logdeathssq on rate endbeh 7985 (rate) 0.45 0.43
(*)Dummy5:effect logdeathssq on rate endbeh 7985 (rate) -1.53 0.78
(*)Dummy6:effect logdeathssq on rate endbeh 7985 (rate) -0.99 0.92

Table A5.: Time Heterogeneity Test for 1985–2000

One.Step.Est. p.Value
(*)Dummy2:degree (density) -0.38 0.10
(*)Dummy3:degree (density) -2.06 0.26
(*)Dummy4:degree (density) 0.82 0.68
(*)Dummy5:degree (density) -0.60 0.19
(*)Dummy6:degree (density) -0.04 0.58
(*)Dummy7:degree (density) -0.92 0.24
(*)Dummy8:degree (density) -1.01 0.60
(*)Dummy9:degree (density) -1.59 0.47
(*)Dummy10:degree (density) -1.70 0.40
(*)Dummy11:degree (density) -1.45 0.87
(*)Dummy12:degree (density) -0.95 1.00
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(*)Dummy13:degree (density) -0.39 0.37
(*)Dummy14:degree (density) -0.76 0.58
(*)Dummy15:degree (density) -1.13 0.68
(*)Dummy2:GWESP (69) 2.50 0.00
(*)Dummy3:GWESP (69) 0.02 0.09
(*)Dummy4:GWESP (69) -0.04 0.08
(*)Dummy5:GWESP (69) 0.07 0.46
(*)Dummy6:GWESP (69) 0.16 0.38
(*)Dummy7:GWESP (69) 0.22 0.68
(*)Dummy8:GWESP (69) 0.32 0.43
(*)Dummy9:GWESP (69) -0.15 0.82
(*)Dummy10:GWESP (69) -0.31 0.92
(*)Dummy11:GWESP (69) -0.08 0.77
(*)Dummy12:GWESP (69) -0.03 0.91
(*)Dummy13:GWESP (69) -0.27 0.04
(*)Dummy14:GWESP (69) 0.22 0.98
(*)Dummy15:GWESP (69) -0.27 0.93
(*)Dummy2:degree act+pop -0.10 0.10
(*)Dummy3:degree act+pop 0.13 0.03
(*)Dummy4:degree act+pop -0.10 0.07
(*)Dummy5:degree act+pop -0.01 0.41
(*)Dummy6:degree act+pop -0.07 0.16
(*)Dummy7:degree act+pop -0.01 0.31
(*)Dummy8:degree act+pop 0.10 0.16
(*)Dummy9:degree act+pop 0.08 0.86
(*)Dummy10:degree act+pop 0.08 0.57
(*)Dummy11:degree act+pop 0.06 0.45
(*)Dummy12:degree act+pop 0.02 0.90
(*)Dummy13:degree act+pop -0.02 0.05
(*)Dummy14:degree act+pop -0.02 0.39
(*)Dummy15:degree act+pop 0.05 0.38
(*)Dummy2:same region 1.08 0.01
(*)Dummy3:same region 1.31 0.15
(*)Dummy4:same region -0.45 0.23
(*)Dummy5:same region 0.96 0.08
(*)Dummy6:same region 0.43 0.66
(*)Dummy7:same region 0.56 0.41
(*)Dummy8:same region -0.30 0.48
(*)Dummy9:same region 0.50 0.46
(*)Dummy10:same region 0.70 0.49
(*)Dummy11:same region 0.62 0.90
(*)Dummy12:same region 0.61 0.95
(*)Dummy13:same region 0.49 0.27
(*)Dummy14:same region 0.73 0.92
(*)Dummy15:same region 0.69 0.72
(*)Dummy2:degree effect on rate endbeh 8500 (rate) 0.37 0.47
(*)Dummy3:degree effect on rate endbeh 8500 (rate) -0.26 0.32
(*)Dummy4:degree effect on rate endbeh 8500 (rate) -0.37 0.39
(*)Dummy5:degree effect on rate endbeh 8500 (rate) 0.26 0.28
(*)Dummy6:degree effect on rate endbeh 8500 (rate) -0.10 0.76
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(*)Dummy7:degree effect on rate endbeh 8500 (rate) -0.05 0.42
(*)Dummy8:degree effect on rate endbeh 8500 (rate) -0.44 0.97
(*)Dummy9:degree effect on rate endbeh 8500 (rate) -0.44 0.47
(*)Dummy10:degree effect on rate endbeh 8500 (rate) -0.76 0.75
(*)Dummy11:degree effect on rate endbeh 8500 (rate) 0.29 0.07
(*)Dummy12:degree effect on rate endbeh 8500 (rate) -0.17 0.88
(*)Dummy13:degree effect on rate endbeh 8500 (rate) -0.42 0.95
(*)Dummy14:degree effect on rate endbeh 8500 (rate) -0.59 0.49
(*)Dummy15:degree effect on rate endbeh 8500 (rate) -0.33 0.23
(*)Dummy2:effect logpop on rate endbeh 8500 (rate) 0.49 0.09
(*)Dummy3:effect logpop on rate endbeh 8500 (rate) 0.30 0.22
(*)Dummy4:effect logpop on rate endbeh 8500 (rate) 0.01 0.94
(*)Dummy5:effect logpop on rate endbeh 8500 (rate) -0.16 0.89
(*)Dummy6:effect logpop on rate endbeh 8500 (rate) -0.10 0.87
(*)Dummy7:effect logpop on rate endbeh 8500 (rate) 0.07 0.99
(*)Dummy8:effect logpop on rate endbeh 8500 (rate) -0.58 0.40
(*)Dummy9:effect logpop on rate endbeh 8500 (rate) 0.00 0.84
(*)Dummy10:effect logpop on rate endbeh 8500 (rate) -0.45 0.29
(*)Dummy11:effect logpop on rate endbeh 8500 (rate) -0.00 0.60
(*)Dummy12:effect logpop on rate endbeh 8500 (rate) -0.10 0.62
(*)Dummy13:effect logpop on rate endbeh 8500 (rate) -0.24 0.57
(*)Dummy14:effect logpop on rate endbeh 8500 (rate) -0.43 0.60
(*)Dummy15:effect logpop on rate endbeh 8500 (rate) 0.08 0.45
(*)Dummy2:effect loggdppc on rate endbeh 8500 (rate) -0.22 0.08
(*)Dummy3:effect loggdppc on rate endbeh 8500 (rate) -0.22 0.98
(*)Dummy4:effect loggdppc on rate endbeh 8500 (rate) -0.21 0.76
(*)Dummy5:effect loggdppc on rate endbeh 8500 (rate) -0.72 0.96
(*)Dummy6:effect loggdppc on rate endbeh 8500 (rate) -0.58 0.55
(*)Dummy7:effect loggdppc on rate endbeh 8500 (rate) -0.37 0.75
(*)Dummy8:effect loggdppc on rate endbeh 8500 (rate) -1.33 0.47
(*)Dummy9:effect loggdppc on rate endbeh 8500 (rate) -0.56 0.54
(*)Dummy10:effect loggdppc on rate endbeh 8500 (rate) -0.38 0.94
(*)Dummy11:effect loggdppc on rate endbeh 8500 (rate) -0.67 0.38
(*)Dummy12:effect loggdppc on rate endbeh 8500 (rate) -0.50 0.37
(*)Dummy13:effect loggdppc on rate endbeh 8500 (rate) -0.01 0.91
(*)Dummy14:effect loggdppc on rate endbeh 8500 (rate) -0.33 0.43
(*)Dummy15:effect loggdppc on rate endbeh 8500 (rate) -0.37 0.94
(*)Dummy2:effect logdeaths on rate endbeh 8500 (rate) 4.09 0.87
(*)Dummy3:effect logdeaths on rate endbeh 8500 (rate) 0.24 0.42
(*)Dummy4:effect logdeaths on rate endbeh 8500 (rate) 1.96 0.85
(*)Dummy5:effect logdeaths on rate endbeh 8500 (rate) 0.85 0.76
(*)Dummy6:effect logdeaths on rate endbeh 8500 (rate) 3.43 0.32
(*)Dummy7:effect logdeaths on rate endbeh 8500 (rate) 7.55 0.07
(*)Dummy8:effect logdeaths on rate endbeh 8500 (rate) 14.28 0.57
(*)Dummy9:effect logdeaths on rate endbeh 8500 (rate) 11.62 1.00
(*)Dummy10:effect logdeaths on rate endbeh 8500 (rate) 12.91 0.13
(*)Dummy11:effect logdeaths on rate endbeh 8500 (rate) 4.57 0.25
(*)Dummy12:effect logdeaths on rate endbeh 8500 (rate) 6.71 0.58
(*)Dummy13:effect logdeaths on rate endbeh 8500 (rate) 5.45 0.01
(*)Dummy14:effect logdeaths on rate endbeh 8500 (rate) 6.95 0.97
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(*)Dummy15:effect logdeaths on rate endbeh 8500 (rate) 3.78 0.40
(*)Dummy2:effect logdeathssq on rate endbeh 8500 (rate) -2.02 0.86
(*)Dummy3:effect logdeathssq on rate endbeh 8500 (rate) -0.07 0.46
(*)Dummy4:effect logdeathssq on rate endbeh 8500 (rate) -0.77 0.78
(*)Dummy5:effect logdeathssq on rate endbeh 8500 (rate) -0.37 0.86
(*)Dummy6:effect logdeathssq on rate endbeh 8500 (rate) -1.67 0.35
(*)Dummy7:effect logdeathssq on rate endbeh 8500 (rate) -3.44 0.09
(*)Dummy8:effect logdeathssq on rate endbeh 8500 (rate) -7.01 0.67
(*)Dummy9:effect logdeathssq on rate endbeh 8500 (rate) -5.87 0.83
(*)Dummy10:effect logdeathssq on rate endbeh 8500 (rate) -6.14 0.16
(*)Dummy11:effect logdeathssq on rate endbeh 8500 (rate) -2.41 0.24
(*)Dummy12:effect logdeathssq on rate endbeh 8500 (rate) -3.22 0.65
(*)Dummy13:effect logdeathssq on rate endbeh 8500 (rate) -2.01 0.01
(*)Dummy14:effect logdeathssq on rate endbeh 8500 (rate) -3.37 0.94
(*)Dummy15:effect logdeathssq on rate endbeh 8500 (rate) -1.85 0.45
(*)Dummy2:effect polity on rate endbeh 8500 (rate) 0.09 0.06
(*)Dummy3:effect polity on rate endbeh 8500 (rate) -0.09 0.80
(*)Dummy4:effect polity on rate endbeh 8500 (rate) -0.12 0.22
(*)Dummy5:effect polity on rate endbeh 8500 (rate) 0.14 0.46
(*)Dummy6:effect polity on rate endbeh 8500 (rate) 0.06 0.95
(*)Dummy7:effect polity on rate endbeh 8500 (rate) 0.01 0.59
(*)Dummy8:effect polity on rate endbeh 8500 (rate) 0.36 0.42
(*)Dummy9:effect polity on rate endbeh 8500 (rate) 0.02 0.59
(*)Dummy10:effect polity on rate endbeh 8500 (rate) -0.05 0.78
(*)Dummy11:effect polity on rate endbeh 8500 (rate) -0.01 0.54
(*)Dummy12:effect polity on rate endbeh 8500 (rate) -0.03 0.24
(*)Dummy13:effect polity on rate endbeh 8500 (rate) -0.12 0.46
(*)Dummy14:effect polity on rate endbeh 8500 (rate) 0.13 0.32
(*)Dummy15:effect polity on rate endbeh 8500 (rate) -0.02 0.67

Table A6.: Time Heterogeneity Test for 2000–2016

One.Step.Est. p.Value

(*)Dummy2:degree (density) 0.98 0.01
(*)Dummy3:degree (density) 0.79 0.99
(*)Dummy4:degree (density) -0.09 0.86
(*)Dummy5:degree (density) 0.98 0.02
(*)Dummy6:degree (density) 0.95 0.00
(*)Dummy7:degree (density) 1.00 0.13
(*)Dummy8:degree (density) 0.21 0.29
(*)Dummy9:degree (density) 1.07 0.00
(*)Dummy10:degree (density) 0.46 0.89
(*)Dummy11:degree (density) 0.49 0.25
(*)Dummy12:degree (density) 0.40 0.01
(*)Dummy13:degree (density) 0.69 0.31
(*)Dummy14:degree (density) 0.74 0.00
(*)Dummy15:degree (density) 0.87 0.00
(*)Dummy16:degree (density) -0.16 0.02
(*)Dummy2:GWESP (69) 1.92 0.00
(*)Dummy3:GWESP (69) 0.49 0.68
(*)Dummy4:GWESP (69) -1.00 0.01
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(*)Dummy5:GWESP (69) 0.60 0.05
(*)Dummy6:GWESP (69) 0.95 0.00
(*)Dummy7:GWESP (69) 0.35 0.03
(*)Dummy8:GWESP (69) -0.34 0.01
(*)Dummy9:GWESP (69) 0.93 0.00
(*)Dummy10:GWESP (69) 0.30 0.67
(*)Dummy11:GWESP (69) 1.60 0.00
(*)Dummy12:GWESP (69) -0.06 0.00
(*)Dummy13:GWESP (69) 1.10 0.46
(*)Dummy14:GWESP (69) -0.16 0.00
(*)Dummy15:GWESP (69) 0.16 0.00
(*)Dummy16:GWESP (69) 0.39 0.30
(*)Dummy2:degree act+pop -0.10 0.01
(*)Dummy3:degree act+pop -0.11 0.28
(*)Dummy4:degree act+pop -0.02 0.73
(*)Dummy5:degree act+pop -0.08 0.03
(*)Dummy6:degree act+pop -0.09 0.00
(*)Dummy7:degree act+pop -0.09 0.03
(*)Dummy8:degree act+pop -0.04 0.79
(*)Dummy9:degree act+pop -0.08 0.02
(*)Dummy10:degree act+pop -0.08 0.78
(*)Dummy11:degree act+pop -0.10 0.30
(*)Dummy12:degree act+pop -0.08 0.01
(*)Dummy13:degree act+pop -0.11 0.14
(*)Dummy14:degree act+pop -0.06 0.12
(*)Dummy15:degree act+pop -0.11 0.00
(*)Dummy16:degree act+pop -0.04 0.97
(*)Dummy2:same region -1.48 0.02
(*)Dummy3:same region -0.65 0.42
(*)Dummy4:same region -0.27 0.86
(*)Dummy5:same region -1.24 0.09
(*)Dummy6:same region -1.23 0.00
(*)Dummy7:same region -1.44 0.04
(*)Dummy8:same region -0.83 0.42
(*)Dummy9:same region -1.29 0.03
(*)Dummy10:same region -0.66 0.43
(*)Dummy11:same region -0.90 0.17
(*)Dummy12:same region -0.83 0.07
(*)Dummy13:same region -1.09 0.51
(*)Dummy14:same region -1.52 0.00
(*)Dummy15:same region -1.35 0.00
(*)Dummy16:same region -0.72 0.10
(*)Dummy2:duration ego 0.03 0.02
(*)Dummy3:duration ego -0.02 0.57
(*)Dummy4:duration ego -0.02 0.55
(*)Dummy5:duration ego -0.05 0.06
(*)Dummy6:duration ego -0.02 0.90
(*)Dummy7:duration ego 0.01 0.13
(*)Dummy8:duration ego 0.02 0.02
(*)Dummy9:duration ego -0.04 0.20
(*)Dummy10:duration ego 0.02 0.13
(*)Dummy11:duration ego 0.01 0.08
(*)Dummy12:duration ego 0.00 0.68
(*)Dummy13:duration ego -0.02 0.15
(*)Dummy14:duration ego -0.03 0.02
(*)Dummy15:duration ego 0.01 0.88
(*)Dummy16:duration ego -0.00 0.66
(*)Dummy2:degree effect on rate endbeh 0016 (rate) -0.09 0.29
(*)Dummy3:degree effect on rate endbeh 0016 (rate) -0.09 0.19
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(*)Dummy4:degree effect on rate endbeh 0016 (rate) 0.05 0.59
(*)Dummy5:degree effect on rate endbeh 0016 (rate) 0.23 0.26
(*)Dummy6:degree effect on rate endbeh 0016 (rate) 0.12 0.93
(*)Dummy7:degree effect on rate endbeh 0016 (rate) 0.22 0.23
(*)Dummy8:degree effect on rate endbeh 0016 (rate) -0.25 0.36
(*)Dummy9:degree effect on rate endbeh 0016 (rate) -0.01 0.76
(*)Dummy10:degree effect on rate endbeh 0016 (rate) -0.11 0.62
(*)Dummy11:degree effect on rate endbeh 0016 (rate) 0.00 0.49
(*)Dummy12:degree effect on rate endbeh 0016 (rate) 0.25 0.40
(*)Dummy13:degree effect on rate endbeh 0016 (rate) 0.02 0.73
(*)Dummy14:degree effect on rate endbeh 0016 (rate) 0.35 0.74
(*)Dummy15:degree effect on rate endbeh 0016 (rate) 1.23 0.07
(*)Dummy16:degree effect on rate endbeh 0016 (rate) 2.58 0.01
(*)Dummy2:effect logpop on rate endbeh 0016 (rate) -0.61 0.63
(*)Dummy3:effect logpop on rate endbeh 0016 (rate) -0.32 0.83
(*)Dummy4:effect logpop on rate endbeh 0016 (rate) -0.05 0.08
(*)Dummy5:effect logpop on rate endbeh 0016 (rate) -0.72 0.11
(*)Dummy6:effect logpop on rate endbeh 0016 (rate) -0.44 0.99
(*)Dummy7:effect logpop on rate endbeh 0016 (rate) -0.37 0.95
(*)Dummy8:effect logpop on rate endbeh 0016 (rate) -1.26 0.21
(*)Dummy9:effect logpop on rate endbeh 0016 (rate) -0.51 0.59
(*)Dummy10:effect logpop on rate endbeh 0016 (rate) -0.29 0.94
(*)Dummy11:effect logpop on rate endbeh 0016 (rate) -0.42 0.76
(*)Dummy12:effect logpop on rate endbeh 0016 (rate) -0.49 0.93
(*)Dummy13:effect logpop on rate endbeh 0016 (rate) -0.67 0.54
(*)Dummy14:effect logpop on rate endbeh 0016 (rate) -0.50 0.81
(*)Dummy15:effect logpop on rate endbeh 0016 (rate) 0.16 0.18
(*)Dummy16:effect logpop on rate endbeh 0016 (rate) -0.14 0.73
(*)Dummy2:effect loggdppc on rate endbeh 0016 (rate) -0.65 0.43
(*)Dummy3:effect loggdppc on rate endbeh 0016 (rate) -0.25 0.29
(*)Dummy4:effect loggdppc on rate endbeh 0016 (rate) -0.27 0.73
(*)Dummy5:effect loggdppc on rate endbeh 0016 (rate) -0.45 0.28
(*)Dummy6:effect loggdppc on rate endbeh 0016 (rate) -0.51 0.94
(*)Dummy7:effect loggdppc on rate endbeh 0016 (rate) -0.65 0.45
(*)Dummy8:effect loggdppc on rate endbeh 0016 (rate) -1.48 0.01
(*)Dummy9:effect loggdppc on rate endbeh 0016 (rate) -0.24 0.45
(*)Dummy10:effect loggdppc on rate endbeh 0016 (rate) -0.34 0.70
(*)Dummy11:effect loggdppc on rate endbeh 0016 (rate) -1.18 0.14
(*)Dummy12:effect loggdppc on rate endbeh 0016 (rate) -0.47 0.73
(*)Dummy13:effect loggdppc on rate endbeh 0016 (rate) -1.07 0.12
(*)Dummy14:effect loggdppc on rate endbeh 0016 (rate) -0.92 0.39
(*)Dummy15:effect loggdppc on rate endbeh 0016 (rate) -1.50 0.18
(*)Dummy16:effect loggdppc on rate endbeh 0016 (rate) -1.08 0.98
(*)Dummy2:effect logdeaths on rate endbeh 0016 (rate) -1.19 0.43
(*)Dummy3:effect logdeaths on rate endbeh 0016 (rate) -1.05 0.30
(*)Dummy4:effect logdeaths on rate endbeh 0016 (rate) -1.16 0.82
(*)Dummy5:effect logdeaths on rate endbeh 0016 (rate) 5.92 0.12
(*)Dummy6:effect logdeaths on rate endbeh 0016 (rate) 0.89 0.48
(*)Dummy7:effect logdeaths on rate endbeh 0016 (rate) 0.86 0.01
(*)Dummy8:effect logdeaths on rate endbeh 0016 (rate) 28.58 0.03
(*)Dummy9:effect logdeaths on rate endbeh 0016 (rate) 6.10 0.17
(*)Dummy10:effect logdeaths on rate endbeh 0016 (rate) 8.82 0.65
(*)Dummy11:effect logdeaths on rate endbeh 0016 (rate) 0.29 0.88
(*)Dummy12:effect logdeaths on rate endbeh 0016 (rate) 0.42 0.57
(*)Dummy13:effect logdeaths on rate endbeh 0016 (rate) 8.51 0.86
(*)Dummy14:effect logdeaths on rate endbeh 0016 (rate) -0.74 0.93
(*)Dummy15:effect logdeaths on rate endbeh 0016 (rate) -3.69 0.23
(*)Dummy16:effect logdeaths on rate endbeh 0016 (rate) -10.16 0.41
(*)Dummy2:effect logdeathssq on rate endbeh 0016 (rate) 0.78 0.41
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(*)Dummy3:effect logdeathssq on rate endbeh 0016 (rate) 0.58 0.33
(*)Dummy4:effect logdeathssq on rate endbeh 0016 (rate) 0.70 0.79
(*)Dummy5:effect logdeathssq on rate endbeh 0016 (rate) -3.04 0.11
(*)Dummy6:effect logdeathssq on rate endbeh 0016 (rate) -0.50 0.50
(*)Dummy7:effect logdeathssq on rate endbeh 0016 (rate) -0.01 0.01
(*)Dummy8:effect logdeathssq on rate endbeh 0016 (rate) -14.08 0.04
(*)Dummy9:effect logdeathssq on rate endbeh 0016 (rate) -2.73 0.19
(*)Dummy10:effect logdeathssq on rate endbeh 0016 (rate) -4.25 0.70
(*)Dummy11:effect logdeathssq on rate endbeh 0016 (rate) -0.13 0.89
(*)Dummy12:effect logdeathssq on rate endbeh 0016 (rate) -0.00 0.56
(*)Dummy13:effect logdeathssq on rate endbeh 0016 (rate) -4.25 0.80
(*)Dummy14:effect logdeathssq on rate endbeh 0016 (rate) 0.34 0.90
(*)Dummy15:effect logdeathssq on rate endbeh 0016 (rate) 1.53 0.24
(*)Dummy16:effect logdeathssq on rate endbeh 0016 (rate) 4.67 0.42
(*)Dummy2:effect duration on rate endbeh 0016 (rate) -0.00 0.82
(*)Dummy3:effect duration on rate endbeh 0016 (rate) -0.04 0.23
(*)Dummy4:effect duration on rate endbeh 0016 (rate) 0.01 0.38
(*)Dummy5:effect duration on rate endbeh 0016 (rate) 0.07 0.00
(*)Dummy6:effect duration on rate endbeh 0016 (rate) -0.01 0.95
(*)Dummy7:effect duration on rate endbeh 0016 (rate) -0.03 0.45
(*)Dummy8:effect duration on rate endbeh 0016 (rate) -0.00 0.95
(*)Dummy9:effect duration on rate endbeh 0016 (rate) -0.01 0.78
(*)Dummy10:effect duration on rate endbeh 0016 (rate) -0.05 0.23
(*)Dummy11:effect duration on rate endbeh 0016 (rate) -0.09 0.31
(*)Dummy12:effect duration on rate endbeh 0016 (rate) 0.04 0.36
(*)Dummy13:effect duration on rate endbeh 0016 (rate) -0.02 0.58
(*)Dummy14:effect duration on rate endbeh 0016 (rate) -0.04 0.51
(*)Dummy15:effect duration on rate endbeh 0016 (rate) -0.05 0.77
(*)Dummy16:effect duration on rate endbeh 0016 (rate) -0.09 0.61

Table A7.: Time Heterogeneity Test for 2002–2016

One.Step.Est. p.Value
(*)Dummy2:degree (density) -0.95 0.93
(*)Dummy3:degree (density) 0.13 0.01
(*)Dummy4:degree (density) 0.18 0.00
(*)Dummy5:degree (density) 0.23 0.33
(*)Dummy6:degree (density) -0.70 0.52
(*)Dummy7:degree (density) 0.35 0.00
(*)Dummy8:degree (density) -0.29 0.63
(*)Dummy9:degree (density) -0.22 0.14
(*)Dummy10:degree (density) -0.31 0.04
(*)Dummy11:degree (density) -0.03 0.55
(*)Dummy12:degree (density) -0.15 0.01
(*)Dummy13:degree (density) -0.05 0.00
(*)Dummy14:degree (density) -0.96 0.04
(*)Dummy2:GWESP (69) -1.64 0.03
(*)Dummy3:GWESP (69) 0.07 0.02
(*)Dummy4:GWESP (69) 0.42 0.00
(*)Dummy5:GWESP (69) -0.15 0.12
(*)Dummy6:GWESP (69) -0.82 0.05
(*)Dummy7:GWESP (69) 0.45 0.00
(*)Dummy8:GWESP (69) -0.24 0.95
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(*)Dummy9:GWESP (69) 1.13 0.00
(*)Dummy10:GWESP (69) -0.58 0.01
(*)Dummy11:GWESP (69) 0.58 0.25
(*)Dummy12:GWESP (69) -0.69 0.00
(*)Dummy13:GWESP (69) -0.23 0.00
(*)Dummy14:GWESP (69) -0.47 0.52
(*)Dummy2:degree act+pop 0.09 0.54
(*)Dummy3:degree act+pop 0.04 0.01
(*)Dummy4:degree act+pop 0.02 0.00
(*)Dummy5:degree act+pop 0.01 0.08
(*)Dummy6:degree act+pop 0.07 0.50
(*)Dummy7:degree act+pop 0.02 0.01
(*)Dummy8:degree act+pop 0.02 0.98
(*)Dummy9:degree act+pop 0.00 0.18
(*)Dummy10:degree act+pop 0.02 0.03
(*)Dummy11:degree act+pop 0.00 0.26
(*)Dummy12:degree act+pop 0.05 0.27
(*)Dummy13:degree act+pop -0.01 0.00
(*)Dummy14:degree act+pop 0.07 0.74
(*)Dummy2:same region 0.48 0.66
(*)Dummy3:same region -0.52 0.04
(*)Dummy4:same region -0.58 0.00
(*)Dummy5:same region -0.78 0.11
(*)Dummy6:same region -0.20 0.70
(*)Dummy7:same region -0.67 0.01
(*)Dummy8:same region 0.05 0.28
(*)Dummy9:same region -0.28 0.09
(*)Dummy10:same region -0.22 0.15
(*)Dummy11:same region -0.50 0.77
(*)Dummy12:same region -0.85 0.00
(*)Dummy13:same region -0.45 0.01
(*)Dummy14:same region -0.18 0.18
(*)Dummy2:duration ego 0.00 0.59
(*)Dummy3:duration ego -0.03 0.06
(*)Dummy4:duration ego 0.00 0.97
(*)Dummy5:duration ego 0.03 0.11
(*)Dummy6:duration ego 0.04 0.01
(*)Dummy7:duration ego -0.02 0.24
(*)Dummy8:duration ego 0.04 0.10
(*)Dummy9:duration ego 0.03 0.07
(*)Dummy10:duration ego 0.02 0.86
(*)Dummy11:duration ego -0.00 0.20
(*)Dummy12:duration ego -0.00 0.04
(*)Dummy13:duration ego 0.02 0.94
(*)Dummy14:duration ego 0.03 0.54
(*)Dummy2:degree effect on rate endbeh 0216 (rate) 0.11 0.48
(*)Dummy3:degree effect on rate endbeh 0216 (rate) 0.24 0.44
(*)Dummy4:degree effect on rate endbeh 0216 (rate) 0.24 0.83
(*)Dummy5:degree effect on rate endbeh 0216 (rate) 0.28 0.41
(*)Dummy6:degree effect on rate endbeh 0216 (rate) 0.00 0.33
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(*)Dummy7:degree effect on rate endbeh 0216 (rate) 0.06 0.92
(*)Dummy8:degree effect on rate endbeh 0216 (rate) -0.01 0.51
(*)Dummy9:degree effect on rate endbeh 0216 (rate) 0.03 0.48
(*)Dummy10:degree effect on rate endbeh 0216 (rate) 0.28 0.46
(*)Dummy11:degree effect on rate endbeh 0216 (rate) 0.13 0.69
(*)Dummy12:degree effect on rate endbeh 0216 (rate) 0.30 0.84
(*)Dummy13:degree effect on rate endbeh 0216 (rate) 1.06 0.10
(*)Dummy14:degree effect on rate endbeh 0216 (rate) 1.62 0.02
(*)Dummy2:effect logpop on rate endbeh 0216 (rate) 0.23 0.08
(*)Dummy3:effect logpop on rate endbeh 0216 (rate) -0.21 0.12
(*)Dummy4:effect logpop on rate endbeh 0216 (rate) -0.10 0.98
(*)Dummy5:effect logpop on rate endbeh 0216 (rate) -0.09 0.89
(*)Dummy6:effect logpop on rate endbeh 0216 (rate) -0.68 0.23
(*)Dummy7:effect logpop on rate endbeh 0216 (rate) -0.17 0.66
(*)Dummy8:effect logpop on rate endbeh 0216 (rate) -0.07 0.92
(*)Dummy9:effect logpop on rate endbeh 0216 (rate) -0.30 0.74
(*)Dummy10:effect logpop on rate endbeh 0216 (rate) -0.12 0.93
(*)Dummy11:effect logpop on rate endbeh 0216 (rate) -0.19 0.58
(*)Dummy12:effect logpop on rate endbeh 0216 (rate) -0.04 0.86
(*)Dummy13:effect logpop on rate endbeh 0216 (rate) 0.26 0.16
(*)Dummy14:effect logpop on rate endbeh 0216 (rate) -0.00 0.76
(*)Dummy2:effect loggdppc on rate endbeh 0216 (rate) -0.04 0.60
(*)Dummy3:effect loggdppc on rate endbeh 0216 (rate) -0.14 0.18
(*)Dummy4:effect loggdppc on rate endbeh 0216 (rate) -0.35 0.83
(*)Dummy5:effect loggdppc on rate endbeh 0216 (rate) -0.38 0.50
(*)Dummy6:effect loggdppc on rate endbeh 0216 (rate) -1.38 0.01
(*)Dummy7:effect loggdppc on rate endbeh 0216 (rate) -0.06 0.37
(*)Dummy8:effect loggdppc on rate endbeh 0216 (rate) -0.12 0.61
(*)Dummy9:effect loggdppc on rate endbeh 0216 (rate) -1.04 0.13
(*)Dummy10:effect loggdppc on rate endbeh 0216 (rate) -0.22 0.62
(*)Dummy11:effect loggdppc on rate endbeh 0216 (rate) -0.56 0.13
(*)Dummy12:effect loggdppc on rate endbeh 0216 (rate) -0.35 0.43
(*)Dummy13:effect loggdppc on rate endbeh 0216 (rate) -0.59 0.19
(*)Dummy14:effect loggdppc on rate endbeh 0216 (rate) -0.44 0.94
(*)Dummy2:effect logdeaths on rate endbeh 0216 (rate) -0.66 0.84
(*)Dummy3:effect logdeaths on rate endbeh 0216 (rate) 3.46 0.11
(*)Dummy4:effect logdeaths on rate endbeh 0216 (rate) 0.34 0.45
(*)Dummy5:effect logdeaths on rate endbeh 0216 (rate) 1.50 0.01
(*)Dummy6:effect logdeaths on rate endbeh 0216 (rate) 19.22 0.02
(*)Dummy7:effect logdeaths on rate endbeh 0216 (rate) 3.89 0.17
(*)Dummy8:effect logdeaths on rate endbeh 0216 (rate) 6.01 0.67
(*)Dummy9:effect logdeaths on rate endbeh 0216 (rate) 0.61 0.85
(*)Dummy10:effect logdeaths on rate endbeh 0216 (rate) 0.69 0.59
(*)Dummy11:effect logdeaths on rate endbeh 0216 (rate) 5.51 0.87
(*)Dummy12:effect logdeaths on rate endbeh 0216 (rate) -0.73 0.94
(*)Dummy13:effect logdeaths on rate endbeh 0216 (rate) -4.56 0.23
(*)Dummy14:effect logdeaths on rate endbeh 0216 (rate) -5.40 0.40
(*)Dummy2:effect logdeathssq on rate endbeh 0216 (rate) 0.40 0.81
(*)Dummy3:effect logdeathssq on rate endbeh 0216 (rate) -1.85 0.10
(*)Dummy4:effect logdeathssq on rate endbeh 0216 (rate) -0.24 0.47
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(*)Dummy5:effect logdeathssq on rate endbeh 0216 (rate) -0.42 0.01
(*)Dummy6:effect logdeathssq on rate endbeh 0216 (rate) -9.40 0.03
(*)Dummy7:effect logdeathssq on rate endbeh 0216 (rate) -1.75 0.19
(*)Dummy8:effect logdeathssq on rate endbeh 0216 (rate) -2.94 0.72
(*)Dummy9:effect logdeathssq on rate endbeh 0216 (rate) -0.28 0.87
(*)Dummy10:effect logdeathssq on rate endbeh 0216 (rate) -0.24 0.57
(*)Dummy11:effect logdeathssq on rate endbeh 0216 (rate) -2.79 0.81
(*)Dummy12:effect logdeathssq on rate endbeh 0216 (rate) 0.31 0.91
(*)Dummy13:effect logdeathssq on rate endbeh 0216 (rate) 2.08 0.24
(*)Dummy14:effect logdeathssq on rate endbeh 0216 (rate) 2.30 0.41
(*)Dummy2:effect polity on rate endbeh 0216 (rate) 0.04 0.27
(*)Dummy3:effect polity on rate endbeh 0216 (rate) 0.03 0.79
(*)Dummy4:effect polity on rate endbeh 0216 (rate) 0.09 0.51
(*)Dummy5:effect polity on rate endbeh 0216 (rate) 0.11 0.84
(*)Dummy6:effect polity on rate endbeh 0216 (rate) 0.27 0.39
(*)Dummy7:effect polity on rate endbeh 0216 (rate) 0.06 0.47
(*)Dummy8:effect polity on rate endbeh 0216 (rate) -0.01 0.88
(*)Dummy9:effect polity on rate endbeh 0216 (rate) 0.25 0.66
(*)Dummy10:effect polity on rate endbeh 0216 (rate) 0.09 0.75
(*)Dummy11:effect polity on rate endbeh 0216 (rate) -0.06 0.24
(*)Dummy12:effect polity on rate endbeh 0216 (rate) -0.10 0.07
(*)Dummy13:effect polity on rate endbeh 0216 (rate) -0.12 0.22
(*)Dummy14:effect polity on rate endbeh 0216 (rate) -0.26 0.05

Table A8.: Time Heterogeneity Test for 2000–2008 Model
with Time Dummies

One.Step.Est. p.Value
(*)Dummy2:degree (density) 0.66 0.22
(*)Dummy3:degree (density) 0.48 0.60
(*)Dummy4:degree (density) -0.43 0.63
(*)Dummy5:degree (density) 0.67 0.59
(*)Dummy6:degree (density) 0.62 0.20
(*)Dummy7:degree (density) 0.74 0.57
(*)Dummy8:degree (density) -0.40 0.66
(*)Dummy2:GWESP (69) 0.97 1.00
(*)Dummy3:GWESP (69) 0.24 0.74
(*)Dummy4:GWESP (69) -0.14 1.00
(*)Dummy5:GWESP (69) 0.40 0.55
(*)Dummy6:GWESP (69) 0.71 0.99
(*)Dummy7:GWESP (69) 0.46 0.99
(*)Dummy8:GWESP (69) 0.51 0.99
(*)Dummy2:degree act+pop -0.09 0.22
(*)Dummy3:degree act+pop -0.05 0.99
(*)Dummy4:degree act+pop 0.00 0.17
(*)Dummy5:degree act+pop -0.05 0.60
(*)Dummy6:degree act+pop -0.06 0.10
(*)Dummy7:degree act+pop -0.06 0.99
(*)Dummy8:degree act+pop -0.03 0.25
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(*)Dummy2:same region -1.14 0.18
(*)Dummy3:same region -0.36 0.40
(*)Dummy4:same region 0.02 0.36
(*)Dummy5:same region -0.98 0.42
(*)Dummy6:same region -0.93 0.14
(*)Dummy7:same region -0.91 1.00
(*)Dummy8:same region -0.31 0.99
(*)Dummy2:duration ego 0.04 0.23
(*)Dummy3:duration ego -0.02 0.48
(*)Dummy4:duration ego -0.02 0.48
(*)Dummy5:duration ego -0.06 0.01
(*)Dummy6:duration ego -0.02 0.16
(*)Dummy7:duration ego 0.01 0.13
(*)Dummy8:duration ego 0.03 0.04
(*)Dummy2:degree effect on rate endbeh 0008 (rate) -0.18 0.33
(*)Dummy3:degree effect on rate endbeh 0008 (rate) -0.15 0.21
(*)Dummy4:degree effect on rate endbeh 0008 (rate) -0.05 0.70
(*)Dummy5:degree effect on rate endbeh 0008 (rate) 0.28 0.07
(*)Dummy6:degree effect on rate endbeh 0008 (rate) 0.11 0.81
(*)Dummy7:degree effect on rate endbeh 0008 (rate) 0.18 0.11
(*)Dummy8:degree effect on rate endbeh 0008 (rate) -0.38 0.40
(*)Dummy2:effect logdeaths on rate endbeh 0008 (rate) -1.35 0.64
(*)Dummy3:effect logdeaths on rate endbeh 0008 (rate) 0.00 0.29
(*)Dummy4:effect logdeaths on rate endbeh 0008 (rate) 0.16 0.88
(*)Dummy5:effect logdeaths on rate endbeh 0008 (rate) 5.01 0.15
(*)Dummy6:effect logdeaths on rate endbeh 0008 (rate) 0.92 0.42
(*)Dummy7:effect logdeaths on rate endbeh 0008 (rate) 1.98 0.01
(*)Dummy8:effect logdeaths on rate endbeh 0008 (rate) 30.28 0.02
(*)Dummy2:effect logdeathssq on rate endbeh 0008 (rate) 0.86 0.62
(*)Dummy3:effect logdeathssq on rate endbeh 0008 (rate) 0.05 0.31
(*)Dummy4:effect logdeathssq on rate endbeh 0008 (rate) 0.07 0.86
(*)Dummy5:effect logdeathssq on rate endbeh 0008 (rate) -2.53 0.14
(*)Dummy6:effect logdeathssq on rate endbeh 0008 (rate) -0.48 0.43
(*)Dummy7:effect logdeathssq on rate endbeh 0008 (rate) -0.66 0.01
(*)Dummy8:effect logdeathssq on rate endbeh 0008 (rate) -14.78 0.03

Table A9.: Time Heterogeneity Test for 2008–2016 Model
with Time Dummies

One.Step.Est. p.Value
(*)Dummy2:degree (density) -0.65 0.65
(*)Dummy3:degree (density) -0.63 0.98
(*)Dummy4:degree (density) -0.72 0.03
(*)Dummy5:degree (density) -0.43 0.52
(*)Dummy6:degree (density) -0.45 0.35
(*)Dummy7:degree (density) -0.41 0.99
(*)Dummy8:degree (density) -1.33 0.05
(*)Dummy2:GWESP (69) -0.68 0.78
(*)Dummy3:GWESP (69) -0.56 0.99
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(*)Dummy4:GWESP (69) -1.05 0.00
(*)Dummy5:GWESP (69) 0.11 0.34
(*)Dummy6:GWESP (69) -0.79 0.99
(*)Dummy7:GWESP (69) -0.54 0.98
(*)Dummy8:GWESP (69) -0.68 0.41
(*)Dummy2:degree act+pop 0.00 0.78
(*)Dummy3:degree act+pop 0.01 0.98
(*)Dummy4:degree act+pop 0.01 0.01
(*)Dummy5:degree act+pop -0.02 0.13
(*)Dummy6:degree act+pop 0.03 0.12
(*)Dummy7:degree act+pop 0.00 0.99
(*)Dummy8:degree act+pop 0.05 0.92
(*)Dummy2:same region 0.77 0.26
(*)Dummy3:same region 0.37 0.98
(*)Dummy4:same region 0.52 0.14
(*)Dummy5:same region 0.27 0.79
(*)Dummy6:same region 0.02 1.00
(*)Dummy7:same region 0.04 0.66
(*)Dummy8:same region 0.59 0.21
(*)Dummy2:duration ego 0.06 0.15
(*)Dummy3:duration ego 0.06 0.35
(*)Dummy4:duration ego 0.04 0.68
(*)Dummy5:duration ego 0.02 0.11
(*)Dummy6:duration ego 0.02 0.28
(*)Dummy7:duration ego 0.06 0.06
(*)Dummy8:duration ego 0.05 0.63
(*)Dummy2:degree effect on rate endbeh 0816 (rate) -0.01 0.41
(*)Dummy3:degree effect on rate endbeh 0816 (rate) -0.05 0.53
(*)Dummy4:degree effect on rate endbeh 0816 (rate) 0.10 0.76
(*)Dummy5:degree effect on rate endbeh 0816 (rate) -0.00 0.61
(*)Dummy6:degree effect on rate endbeh 0816 (rate) 0.07 0.99
(*)Dummy7:degree effect on rate endbeh 0816 (rate) 0.41 0.30
(*)Dummy8:degree effect on rate endbeh 0816 (rate) 0.77 0.11
(*)Dummy2:effect logdeaths on rate endbeh 0816 (rate) 0.91 0.63
(*)Dummy3:effect logdeaths on rate endbeh 0816 (rate) -3.26 0.88
(*)Dummy4:effect logdeaths on rate endbeh 0816 (rate) -3.90 0.59
(*)Dummy5:effect logdeaths on rate endbeh 0816 (rate) 0.76 0.91
(*)Dummy6:effect logdeaths on rate endbeh 0816 (rate) -4.66 0.89
(*)Dummy7:effect logdeaths on rate endbeh 0816 (rate) -5.25 0.24
(*)Dummy8:effect logdeaths on rate endbeh 0816 (rate) -8.19 0.42
(*)Dummy2:effect logdeathssq on rate endbeh 0816 (rate) -0.58 0.67
(*)Dummy3:effect logdeathssq on rate endbeh 0816 (rate) 1.48 0.89
(*)Dummy4:effect logdeathssq on rate endbeh 0816 (rate) 1.85 0.56
(*)Dummy5:effect logdeathssq on rate endbeh 0816 (rate) -0.60 0.85
(*)Dummy6:effect logdeathssq on rate endbeh 0816 (rate) 2.19 0.85
(*)Dummy7:effect logdeathssq on rate endbeh 0816 (rate) 2.28 0.26
(*)Dummy8:effect logdeathssq on rate endbeh 0816 (rate) 3.68 0.44
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Appendix B.

B.1. Alternate Distributions for AFT Models

Table B1.: Accelerated Failure Time Models, Log-Logistic Distri-
bution

(1) (2) (3)

Fatalities (log) 0.448∗∗ 0.448∗∗ 0.452∗∗

(0.169) (0.172) (0.174)

Fatalities Sq. (log) 1.380∗ 1.412∗ 1.402∗

(0.265) (0.275) (0.274)

Number of Allies 1.312∗∗∗

(0.070)

EV Centrality 1.019∗∗

(0.007)

Neighborhood 1.018∗∗

(0.009)

Clustering 0.743 1.297 1.291
(0.194) (0.326) (0.342)

Left 0.667∗ 0.653∗ 0.695
(0.155) (0.156) (0.172)

Right 0.437∗∗ 0.391∗∗ 0.417∗∗

(0.154) (0.143) (0.155)

Nationalist 0.602∗∗ 0.588∗∗ 0.610∗∗

(0.136) (0.138) (0.145)

Regime 0.589 0.584 0.576
(0.201) (0.206) (0.205)

Policy 0.466∗∗ 0.444∗∗ 0.442∗∗

(0.162) (0.159) (0.159)

Territory 1.169 1.303 1.281
(0.411) (0.473) (0.467)

Attack Diversity 6.878∗∗∗ 7.781∗∗∗ 8.146∗∗∗

(2.991) (3.473) (3.647)

Share Trans. Terr. 0.297∗∗∗ 0.287∗∗∗ 0.297∗∗∗

(0.043) (0.042) (0.044)

Multiple Bases 0.828 0.893 0.885
(0.147) (0.162) (0.163)

Pop (log) 1.033 1.029 1.022
(0.045) (0.047) (0.047)

GDP/Pop (log) 0.938 0.950 0.953
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(0.061) (0.064) (0.065)

Democracy 0.584 0.635 0.612
(0.209) (0.235) (0.228)

East Asia & Pacific 1.883∗∗ 1.888∗∗ 1.950∗∗

(0.554) (0.569) (0.596)

Europe & Central Asia 0.879 0.776 0.810
(0.208) (0.188) (0.198)

Latin Am. & Caribbean 0.918 0.875 0.864
(0.239) (0.235) (0.234)

North America 1.404 1.205 1.260
(0.487) (0.434) (0.459)

South Asia 1.447 1.426 1.525
(0.500) (0.511) (0.550)

Sub-Saharan Africa 2.116∗∗ 1.908∗ 2.003∗∗

(0.683) (0.637) (0.679)

log(scale) 3.612∗∗∗ 3.718∗∗∗ 3.752∗∗∗

(1.296) (1.351) (1.361)

log(shape) 0.296∗∗∗ 0.256∗∗∗ 0.249∗∗∗

(0.051) (0.051) (0.051)

Observations 7,777 7,777 7,777
AIC 2057.237 2083.36 2086.747
BIC 2224.251 2250.374 2253.761
Log Likelihood −1,004.618 −1,017.680 −1,019.373

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2.: Accelerated Failure Time Models, Extreme Value Dis-
tribution

(1) (2) (3)

Fatalities (log) 0.373∗∗ 0.401∗∗ 0.383∗∗

(0.162) (0.176) (0.168)

Fatalities Sq. (log) 1.505∗ 1.506∗ 1.530∗

(0.334) (0.336) (0.341)

Number of Allies 1.291∗∗∗

(0.082)

EV Centrality 1.013∗

(0.007)

Neighborhood 1.017∗

(0.010)

Clustering 0.657 1.257 1.183
(0.191) (0.343) (0.339)

Left 0.449∗∗∗ 0.454∗∗∗ 0.488∗∗∗

(0.110) (0.113) (0.123)

Right 0.293∗∗∗ 0.276∗∗∗ 0.297∗∗∗

(0.086) (0.083) (0.091)

Nationalist 0.643∗ 0.617∗∗ 0.649∗

(0.148) (0.145) (0.155)

Regime 0.738 0.704 0.678
(0.228) (0.221) (0.215)

Policy 0.490∗∗ 0.459∗∗ 0.446∗∗

(0.159) (0.151) (0.148)

Territory 1.047 1.198 1.170
(0.337) (0.390) (0.386)

Attack Diversity 9.996∗∗∗ 9.450∗∗∗ 9.954∗∗∗

(5.248) (4.949) (5.195)

Share Trans. Terr. 0.179∗∗∗ 0.168∗∗∗ 0.175∗∗∗

(0.029) (0.027) (0.028)

Multiple Bases 0.900 0.919 0.936
(0.132) (0.138) (0.143)

Pop (log) 1.090∗∗ 1.080∗ 1.074
(0.047) (0.048) (0.048)

GDP/Pop (log) 0.953 0.969 0.978
(0.058) (0.061) (0.061)

Democracy 1.223 1.236 1.177
(0.469) (0.482) (0.465)
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East Asia & Pacific 1.503 1.399 1.408
(0.456) (0.433) (0.440)

Europe & Central Asia 1.075 0.940 0.924
(0.240) (0.211) (0.207)

Latin Am. & Caribbean 1.093 1.044 1.011
(0.269) (0.263) (0.255)

North America 1.262 1.281 1.293
(0.359) (0.374) (0.381)

South Asia 1.206 1.227 1.298
(0.446) (0.457) (0.489)

Sub-Saharan Africa 1.864∗∗ 1.737∗ 1.783∗

(0.555) (0.524) (0.549)

log(scale) 2.869∗∗ 3.087∗∗ 3.077∗∗

(1.92) (1.259) (1.269)

log(shape) -0.242∗∗∗ -0.253 ∗∗∗ -0.261∗∗∗

(0.051) (0.052) (0.051)

Observations 7,777 7,777 7,777
AIC 2088.286 2109.561 2110.403
BIC 2255.3 2276.575 2277.417
Log Likelihood −1,020.143 −1,030.781 −1,031.201

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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